DOI QR코드

DOI QR Code

Particle Charging and Collection in Two-Stage, Parallel-Plate Electrostatic Precipitators

2단 평행판 정전식 집진기에서의 입자하전 및 포집


Abstract

From a theoretical analysis point of view, the 2-stage precipitator is decomposed into two units: charging cell and collecting cell. Collection efficiency predictions of the two-stage parallel-plate electrostatic precipitator have been performed theoretically incorporating with the charging and the collecting cells. Particle trajectorise passing the charging cell have been modeled as a simple one. Particle charge distribution at the outlet of the charging cell is calculated through integration of the present unipolar combined charging rate along the entire particle trajectory, and average charge of particles at the outlet of the charging cell is obtained from the particle charge distribution. As for the collecting cell, the diminution of particle concentration along the longitudinal direction of the collecting cell is investigated considering the conventional Deutsch's theory and the laminar theory. One should note that the collection efficiency formula derived is based on monodisperse aerosols. It has been confirmed through the analysis that predictions of particle charge by applying White's unipolar diffusion charging theory overpredict actual cases in the continuum regime, while predictions by Fuch's unipolar diffusion charging theory indicate the reasonable result in the same regime. Theoretical predictions of collection efficiency are also compared with the available experimental results. Comparisons show that the experimental results are consistently located in the collection efficiency region bounded by the two limits, the Deutsch and the laminar collection efficiencies. Finally design parameters of the 2-stage electrostatic precipitator have been investigated systematically through the one-variable-at-a-time method in terms of collection efficiency. Applied voltages on the corona wire of the charging cell and the plate of the collecting cell, and the average air velocity have been selected as the design parameters.

Keywords