Boundary Layer Flow Under a Sluice Gate

수직수문하의 경계층흐름

  • 이정열 (한국해양연구소 해양공학연구부(Coastal Engineering Laboratory, Korea Ocean Research and Development Institute, Ansan P.O. Box 29, 425-600, Korea))
  • Published : 1994.09.01

Abstract

The boundary layer flow under a sluice gate is numerically solved by the random vortex sheet method combined with the vortex-in-cell method in a boundary-fitted coordinate system. The numerical solution shows that the boundary layer developed along the vertical sluice gate wall is the primary cause for the discrepancy in the contraction ratio between the laboratory experiments and inviscid theory; the bottom boundary layer plays much a smaller role in the discrepancy. By dimensional analysis it is concluded that the discrepancy is inversely proportional to the 3/4th power of the gate opening, as analyzed by Benjamin(1956). The results of the numerical simulation and dimensional analysis show a good agreement with experimental results obtained by Benjamin(1956).

수직수문하의 경계층 흐름(boundary layer flow)이 경계고정좌표계(Boundary- Fitted Coordinate System)에서 무작위 소용돌이 판 방법(Random Vortex Sheet Method)과 요소내 소용돌이 방법(Vortex-in-Cell Method)을 이용하여 수치계산되었다. 수치해에 의한 수문을 따라 형성된 경계층이 수축률의 실험자료와 비점성이론에 의한 그 결과의 차이를 유발하는 주원인인 것으로 보여진다. 그 동안 주원인일 것으로 믿어왔던 바닥면 경게층의 역할은 수문면의 그 것보다는 적은 것으로 수치계산되었다. 또한 차원해석을 통하여 경계층 흐름에 의한 수축율의 그 차이가 수문 길이의 평방근에 반비례하는 것으로 추정되었으며, 이는 Benjamin(1956)에 의하여 분석된 것과 결국 동일한 것임이 밝혀졌다. 수치모델과 차원해석에 따른 결과는 Benjamin(1956)에 의해 얻어진 수축률의 실허미와 비교하여 만족할 만하였다.

Keywords

References

  1. J. Comput. Phys. v.31 The cloud in cell technique applied to the roll up of vortex sheets Baker,G.R.
  2. J. Fluid Mech. v.123 Generalized vortex methods for free-surface flow problem Baker,G.R.;D.I.Meiron
  3. J. Fluid Mech. v.1 On the flow in channels when rigid obstacles are placed in the stream Benjamin,T.B.
  4. J. Fluid Mech. v.196 Effects of finite depth and current velocity on large amplitude Kelvin-Helmholtz waves Bontozoglou,V.;T.J.Hanratty
  5. J. Hydr. Div., ASCE v.99 no.6 Free surface ideal fluid flow Chan,S.T.K.;Larock,B.E.;Herrmann,L.R.
  6. J. Comput. Phys. v.27 Vortex sheet approx. of boundary layers Chorin,A.J.
  7. SIAM J. Sci. Stat. Comput. v.1 Vortex models and boundary layer instability Chorin,A.J.
  8. J. Engrg. Mech. Div., ASCE v.94 no.1 Solution of gravity flow under sluice gates Fangmeier,D.D.;T.S.Strelkoff
  9. J. Hydr. Div., ASCE v.17 no.11 Solving turbulent flows using finite elements Finnie,J.I.;Jefferson,R.W.
  10. J. Comput. Phys. v.68 Vortex simulation of laminar recirculating flow Ghoniem,A.F.;Y.Cagnon
  11. J. Hydr. Div., ASCE v.103 no.5 Numerical solution for flow under sluice gates Issacs,L.T.
  12. J. Fluid Mech. v.41 no.4 A theory for free outflow beneath radial gates Larock,B.E.
  13. J. Hydr. Div., ASCE v.111 no.6 Body-fitted coordinates for flow under sluice gates Masliyah,J.H.;Nandakumar,K.;Hemphill,F.;L.Fung
  14. Z. angew. Math. Mech. v.17 Uber den Stromungsvorgang an einer unterstromten scharfkantigen Planschutze Pajer,G.
  15. Ph.D. Thesis, Stanford University Methods for calculating the effect of gravity on two-dimensional free surface flow Perry,B.
  16. J. Hydr. Div., ASCE v.103 no.4 Free flow immediately below sluice gates Rajaratnam,N.
  17. Boundary layer theory Schlichting,H.
  18. J. Comput. Phys. v.60 Wave-induced bed flows by a Lagrangian vortex scheme Smith,P.A.;P.K.Stansby
  19. Phil. Trans. v.A240 Relaxation methods applied to engineering problems: XII, Fluid motions characterized by 'free' streamlines Southwell,R.B.;Vaisey,G.
  20. Numerical grid generation Thomson,J.F.