A Theoretical Study on MEK-Water Separation by Azeotropic Distillation

MEK-물 공비 혼합물의 공비증류에 관한 이론적 연구

Kim, Hyung-Kyu;Yi, Jung-Seok;Han, Choon;Na, Byung-Ki;Chung, Yon-Soo;Song, Hyung-Keun
김형규;이정석;한춘;나병기;정연수;송형근

  • Published : 1995.04.30

Abstract

MEK(methyl ethyl ketone) cannot be separated from water by normal distillation because of the presence of minimum boiling azeotrope. However it can be separated by azeotropic distillation by adding entrainer. The best entrainer was selected by considering the ratio between infinite dilute activity coefficients of each component for suggested entrainers and relative volatilities. From this method, acetone was selected as the best entrainer for the MEK-Water system. When the distillation tower was simulated by the UNIFAC equilibrium model for this MEK-Water-Acetone system, the minimum reflux ratio was observed as 0.6. Also, the optimum feed-plate was calculated at each reflux ratio for various amounts of entrainer. Results indicated the number of ideal plates decreases with the amount of entrainer. As the best results, 13 ideal plates were required to obtain 95 mole% of MEK as the bottom product from 70 mole% of MEK of the MEK-Water solution when the reflux ratio and the ratio of entrainer to feed were 0.85 and 2, respectively. In this case, the optimum feed-plate location, which required the minimum number of ideal plates, was the eighth.

공비증류방법을 통해 최저 공비점을 형성하는 MEK(methyl ethyl ketone)-물 혼합물의 분리를 이론적으로 고찰하였다. 첨가제(entrainer) 조건을 만족시키는 물질들 중에서 MEK와 물 성분간의 분자간 친화력을 감안하고 무한희석 활동도 계수의 비와 상대휘발도를 이용하여 최적의 첨가제 acetone을 선택하였다. 또한 증류탑 모사를 통하여 MEK-물-Acetone의 삼성분 혼합물에 대한 증류분리를 시도하였다. UNIFAC 모델로 single feed의 증류탑을 모사하여 조작조건들의 영향을 고찰한 결과, 최소 환류비가 0.6이 됨을 알 수 있었고 첨가제 양 및 환류비 변화에 따른 최적 급단수를 구할 수 있다. 한편 첨가제의 양이 증가할수록 이상증류단수가 감소함이 확인되었다. 이를 통해 MEK 70몰%인 MEK-물 혼합물로부터 탑하부 생성물로서 95몰% MEK 조성으로 분리하는 경우, 환류비가 0.85이고 2배의 acetone이 사용되었을 때 최적 급단은 8단이 되며 이상증류단수는 가정 적은 13단의 결과를 얻었다.

Keywords

References

  1. Encyclopedia of Chemical Technology Grayson, H.
  2. Chem. Eng. Prog. v.65 Gerster, J.A.
  3. Chem. Eng. Prog. v.85 Stichlmair, J.;Fair, J.R.;Bravo, J.L.
  4. AIChE J. v.38 Stichlmair, J.;Herguijuela, J.R.
  5. Design of Equilibrium Stage Processes Smith, B.D.
  6. Ind. Eng. Chem. v.51 Pierotti, G.J.;Deal, C.H.;Derr, E.L.
  7. Journal of Chemical Engineering Data v.5 Gerster, J.A.;Gorton, J.A.;Eklund, R.
  8. Organic Chemistry Morrison, R.T.;Boyd, R.N.
  9. Ind. Eng. Chem. Prod. Res. Dev. v.24 Vandyk, J.W.;Frisch, H.L.;Wu, D.T.
  10. Ind. Eng. Chem. Process Des. Dev. v.21 Gmehling, J.;Rasmussen, P.;Fredenslund, A.
  11. Ind. Eng. Chem. Res. v.30 Foucher, E.R.;Doherty, M.F.;Malone, M.F.
  12. The Can. Journal of Chem. Eng. v.69 Laroche, L.;Bekiaris, N.;Andersen, H.W.;Morari, M.
  13. Ind. Eng. Chem. Fundam. v.24 Doherty, M.F.;Caldarola, G.A.
  14. AIChE J. v.38 Laroche, L.;Bekiaris, N.;Andersen, H.W.;Morari, M.
  15. The Properties of Gas & Liquids Reid, R.C.;Prausnitz, J.M.;Poling, B.E.