Geochemistry and Petrogenesis of the Granitic Rocks in the Vicinity of the Mt. Sorak

설악산 부근의 화강암류에 대한 지구화학 및 성인

  • Kyoung-Won Min (Department of Resources Engineering, Kangwon National University) ;
  • Sung-Bum Kim (Ssangyong Resources Development Co. Ltd.)
  • Published : 1996.06.01

Abstract

The granitic rocks in the vicinity of the Mt. Sorak, the northeastern part of the NE-SW elongated Mesozoic granitic batholith in the Kyeonggi massif, consist of granodiorite, biotite granite, two-mica granite and alkali feldspar granite. Variations In major and most trace elemental abundances show a typical differentiation trend in a granitic magma. Granitic rocks all display a calc-alkaline trend in the AFM diagram. Also, In the ACF diagram discriminating between I- and S-type granitic rocks, granodiorite and most biotite granite in the southeastern area represent I-type and magnetite-series characteristics, while most biotire granite and two-mica granite in the northwestern area exhibit S-type and ilmenite-series ones.According to recent studies of the granitle rocks In the Inje-Hongcheon district. all ihe granitic rocks distributed in the northeastern part of the Kyeonggi massif have been classified as late Triassic to early Jurassic Daebo granite. With reference of the formerly published ages, an age oi $125.6{\pm}4.4$ Ma calculated by the slope in the plot of $^{87}Rb/^{86}Sr-^{87}Sr/^{86}Sr$ for the biotite granite samples from the southeastern area is inferred as an emplacement age for the granitic rocks in the vicinity of the Mt. Sorak. On the basis of elemental variations and Sr isotope compositions, an possible evolutional process for the granitic magmas in this area is suggested. The primary magma of I-type and magnetite-series generated about 125 Ma by partial melting of igneous originated crustal materials, might be emplaced and evolved through fractional crystallization, convection and assimilation of the surrounding Precambrian metasediments to become S-type and ilmenlte-serles in the outer area, and then solidified to granodiorite, biotite granite and two-mica granite.At the latest stage, the evolved hydrothermal solution altered the formerly solidified biotite granite to alkali feldspar granite and probably later local igneous activities affected the alkali feldspar granite again.

경기육괴 내에 북동-남서 방향으로 넓게 분포하는 대규모의 중생대 화강암저반의 북동부지역인 설악산 부근의 화강암류는 화강암류는 화강섬록암, 흑운모화강암, 복운모화강암 및 알카리장석화강암으로 대별된다. 화강암류들의 주원소 및 미량원소의 함량변화 양상은 화강암질 마그마에서의 전형적인 분화경향을 나타낸다. 전체적으로 칼크-알카리계열로서, 화강섬록암 및 남동부의 흑운모화강암은 I-형/자철석계열에 속하며, 북서부의 흑운모화강암 및 복운모화강암은 S-형/티탄철석계열의 특성을 나타낸다. 경기육괴의 북동부에 분포하는 화강암류는 최근 인제-홍천지역의 화강암류에 대한 연대측정 연구에 의하여 모두 후기 트리아스기 내지 초기 쥬라기의 대보화강암류로 분류되어 왔다. 본 연구에서는, 기존의 설악산지역에서 얻어진 연대를 토대로, 연구지역의 남동부 흑운모화강암에 대한 $^{87}Rb/-^{86}Sr-^{87}Sr/{86}Sr$의 기울기에 의하여 얻어진 연대인 125.6$\pm$4.4 Ma를 화강암의 관입연대로 해석하고, 연구지역에서의 화강암류의 원소함량 및 Sr 동위원소비의 변화를 설명할 수 있는 마그마 진화과정의 추정 모델을 제시하였다. 125 Ma 경에 지각물질의 부분용융에 의하여 생성 관입된 I-형/자철석계열의 초기 마그마 및 분별결정, 대류 및 주변암인 선캠브리아기 변성퇴적암류의 동화에 의하여 S-형/티탄철석계열로 점차 진화된 마그마의 고결로 화강섬록암, 흑운모화강암 및 복운모화강암을 형성하였을 것이다. 마그마의 분화 말기에 형성된 열수는 이미 고결된 흑운모화강암을 알카리화강암으로 변질시키고, 알카리화강암은 후기의 지역적인 화성화동에 의하여 재차 영향을 받았을 것으로 추정된다.

Keywords

References

  1. Geol. Soc. Amer. Bull. v.100 Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California Ague, J.J.;Brimhall, G.H.
  2. Rept. Geol. Mineral. Res. v.13 Rb/Sr age determinations on granite gneiss and granite in Seosan, Onjeongri granite, and Mesozoic granites along the east coast, Korean peninsular Choo, S.H.;Jin, M.S.;Yoon, H.S.;Kim, D.H.
  3. Contrib. Mineral. Petrol. v.80 Nature and origin of A-type granites with particular reference to southeastern Australia Collins, W.J.;Beams, S.D.;White, A.J.R.;Chapell, B.W.
  4. Earth Planet. Sci. Lett. v.53 Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization DePaolo, D.J.
  5. Geological map of Korea (1:250,000) GMIK (Geological and Mineral Institute of Korea)
  6. Earth Planet. Sci. Lett. v.38 The application of trace elements to petrogenesis of igneous rocks of granitic composition Hanson, G.N.
  7. Jour. Geol. Soc. Australia v.25 Contrast between I-type and S-type granitoids of the Kosciusko batholith Hine, R.;Williams, I.S.;Chapell, B.W.;White, A.J.R.
  8. Can. J. Earth Sci. v.8 A guide to the chemical classification of the common volcanic rocks Irvine, T.N.;Baragar, W.R.A.
  9. Mining Geol. v.27 The magnetite-series and ilmenite-series granitic rocks Ishihara, S.
  10. J. Geol. Soc. Korea v.20 Apatite fission track dating from the Jurassic and Cretaceous granites in South Korea Jin, M.S.;Gleadow, A.W.J.;Lovering, J.F.
  11. J. Min. Petrol. Econ. Geol. v.85 Petrography and major element geochemistry of the granitic rocks in the Inje-Hongcheon district, South Korea Jwa, Y.J.
  12. J. Geol. Soc. Korea v.27 A study on Jurassic granitic rocks in the Inje-Hongcheon district, South Korea. Ⅱ. Effect of wallrock assimilation Jwa, Y.J.
  13. Geochem. J. v.24 Geochronology and cooling history of Mesozoic granitic rocks in the Inje-Hongcheon district, South Korea Jwa, Y.J.;Nakazima, T.;Uchiumi, S.;Shibata, K.
  14. Geology of Korea, Text for geological map of Korea. 1:1,000,000 KIER (Korea institue of Energy and Resources)
  15. Kangwon National Univ. unpublished Ph. D. thesis Geochemistry and petrogenesis of the granitic rocks in the vicinity of the Mt. Sorak Kim, S.B.
  16. Earth Planet. Sci. Lett. v.37 A general mixing equation with application to Icelandic basalt Langmuir, C.H.;Vocke, R.D.Jr.;Hanson, G.N.;Hart, S.R.
  17. J. Korean Earth sci. Educ. Assoc. v.3 Geology around Mt. Sorak Lee, D.S.
  18. Geol. Soc. Amer. Abstr. Prog. v.11 Characteristics and origin of anorogenic granites Loiselle, M.C.;Wones, D.R.
  19. J. Geophys. Res. v.69 The granite system at pressures of 4 to 10 kilobars Luth, W.C.;Jahns, R.H.;Tuttle, O.F.
  20. Geochim. Cosmochim. Acta v.40 Trace element distribution patterns and their relation to the crystallization of granitic melt McCarthy, T.S.;Hasty, R.A.
  21. The Evolution of the Igneous Rocks. Fiftieth Anniversary Perspectives Effects of assimlation McBirney, A.R.;H.S. Yoder, Jr.(ed.)
  22. U.S. Geol. Surv. Prof. Paper 525-B A classification for quartzrich igneous rocks based on feldspar ratios O'Conner, J.T.
  23. J. Petrol. v.25 Trace element discrimination diagram for the tectonic interpretation of granitic rocks Pearce, J.A.;Harris, N.B.W.;Tindle, A.G.
  24. The Nature and Origin of Granite Pitcher, W.S.
  25. Am. J. Sci. v.263 Comments on viscosity, crystal settling, and convection in granitic magmas Shaw, H.R.
  26. Univ. of Tokyo Bull. v.28 The Tokuwa batholith, central Japan - an example of occurrence of ilmenite-series granitoids in a batholith, The University Museum Shimizu, M.
  27. Geochim. Cosmochim. Acta v.40 Rb-Sr and U-Th-Pb systematics of alkaline rocks: The alkaline rocks from Italy Vollmer, R.
  28. Contrib. Mineral. Petrol. v.95 A-type granites: Geochemical characteristics, discrimination and petrogenesis Whalen, J.B.;Currie, K.L.;Chappell, B.W.
  29. Geol. Soc. Am. Mem. v.159 Granitoid types and their distribution in the Lachlan fold belt, southeastern Australia White, A.J.R.;Chappell, B.W.