Petrology and Geochemical Characteristics of A-type Granite with Particular Reference to the Namsan Granite, Kyeongju

경주 남산일대의 A-형 화강암의 암석학 및 지화학적 특성

  • Published : 1996.12.01

Abstract

Petrological and geochemical characteristics of A-type granite were studied from the Namsan and Tohamsan granites in the vicinity of Kyeongju city, southeastern Korea. The Namsan granite consists of hypersolvus alkali-feldspar granite in the northern part and subsolvus alkali-feldspar to biotite granite in the southern part. This hypersolvus granite usually has miarolitic cavities and is characteristically composed of quartz, single homogeneous one-feldspar (alkali feldspar) forming tabular microperthite crystals, or micrographic intergrowth with quartz, and interstitial biotite (Fe-rich annite), alkali amphibole (riebeckitic arfvedsonite) and fluorite. Petrographic and petrochemical characteristics indicate that the hypersolvus granite and subsolvus granite from the Namsan belogn to the A-type and I-type granitoid, respectively. The A-type granite is petrochemically distinguished from the I-type Bulgugsa granites of Late Cretaceous in South Korea, by higher abundance of $SiO_2$, $Na_2O$, $Na_2O+K_2O$, large highly charged cations such as Rb, Nb, Y, Zr, Ga, Th, Ce. U the REEs and Ga/Al ratio, and lower abundance of $TiO_2$, $Al_2O_3$, CaO, $P_2O_5$, MnO, MgO, Ba, Sr, Eu. The total abundance of REEs is 293 ppm to 466 ppm, showing extensively fractionated granitic compositon, and REEs/chondrite normalized pattern shows flat form with strong Eu '-' anomaly ($Eu/Eu^{\ast}$=0.03-0.05). A-type granite from the Namsan area is thought to have been generated late in the magmatic/orogenic cycle after the production of I-type granite and by direct, high-temperature partial melting of melt-depleted, relatively dry tonalitic/granulitic lower crustal material with underplating by mantle-derived basaltic magmas associated with subduction.

한반도 남동부 경주시 일원에 분포하는 남산화강암체에서 산출되는 A-형 화강암에 대한 암석학 및 지화학적 특성에 대하여 고찰하였다. 남산화강암체는 북부의 하이퍼솔브스 알칼리장석화강암과 남부의 서브솔브스 알칼리장석화강암 및 흑운모화강암으로 구성된다. 이들 중 하이퍼솔브스 화강암은 정동구조를 나타내며, 특징적으로 퍼다이트 조직을 나타내는 알칼리장석, 석영과 이들 사이의 간극을 충진하고 있는 철이 풍부한 흑운모와 알칼리각섬석 및 형석으로 구성되며, 석영과 알칼리장석은 종종 미문상조직을 나타낸다.남산화강암체의 하이퍼솔브스화강암 및 서브솔브스호강암은 암석기재 또는 지화학적 특징을 볼 때, 각 I-형의 불국사회강암류와 구분된다. 즉 높은 $SiO_2$, $Na_2O$, $Na_2O+K_2O$, Rb, Nb, Y, Zr, Ga, Th, Ce, U 함량을 나타내며, $TiO_2$, $Al_2O_3$, CaO, $P_2O_5$, MnO, MgO, Ba, Sr, Eu등은 낮은 함량을 나타낸다. 또한 높은 Ga/Al비를 나타내며, 희토류원소의 전체함량이 약 293-466 ppm 으로 분화가 상당히 많이 진행된 화강암의 조성을 보여주며, 희토류원소의 변화패톤도 특징적으로 심한 Eu'-'이상(Eu/$Eu^{\ast}$=0.03~0.05)을 나타내는 편평 백립암질 물질이, 맨틀로부터 새로운 열원의 공급에 의해, 고온에서 부분용융되어 만들어진 A-형 마그마로부터 유래하였을 가능성을 나타낸다.

Keywords

References

  1. 부산대학교 석사학위논문 경주 남산일대의 A-type 화강암류의 지화학적 특징과 성인 고정선
  2. 지질학회지 v.4 경상분지내에서의 백악기 화성활동에 관한 연구(Ⅰ) 원종관
  3. 지구과학회지 v.11 no.1 경주 남산일대의 화강암의 암석학 및 지구화학의 특성 윤성효;황인호
  4. 대한지질학회 제50차 학술발표회 논문요약집(1-109) 울산-경주 화강암 suite의 성인과 지체 구조 발달사적 의미: 그 예비적 고찰 이미정;이민성;이종익;Moutte, J.;Nagao, K.
  5. 岩石鑛物鑛床學會誌(日本) v.75 no.49 韓國 東南部, 慶尙盆地 南部地域の 花崗岩類, その1 一般地質と花崗岩のK-Ar年代 李倫鐘
  6. 한국동력자원연구소, 조사연구보고 v.13 Rb/Sr년대측정연구(서산화강편마암 및 화강암, 평해 온정리 화강암, 기타 지역의 화강암) 주승환;진명식;윤현수;김동학
  7. 부산대사대논문집 v.11 경상분지 동남부의 환상구조(Ⅰ) 차문성
  8. 자원개발 연구소, 연구특보 울산지역 경상계 지층의 지질 및 지화학적 연구 최현일;오재호;신성천;양문열
  9. 부산대학교 대학원 석사학위논문 경주 남산-토함산 일원의 화강암질암체에 관한 암석학적 연구 황병훈
  10. Mem. Geol. Soc. Am. v.161 Proterozoic anorogenic granitic plutonism of North America Anderson, J. L.
  11. Contrib. Mineral. Petrol. v.28 The production of granitic melts during ultrametamorphism Brown, G. C.;Fyfe, W. S.
  12. Pacific Geol. v.8 Two contrasting granite types Chappell, B. W.;White, A. J. R.
  13. Royal Soc. Edinburgh Trans. v.79 Origin of infracrustal(I-type) granite magmas Chappell, B. W.;Stephens, W. E.
  14. Canadian Mineral v.14 Crystallization and origin of some peraluminous(S-type) granitic magmas Clemens, J. D.;Wall, V. J.
  15. Am. Mineral. v.71 Origin of A-type granite: Experimental constraints Clemens, J. D.;Holloway, J. R.;White, A. J. R.
  16. Tectonophysics v.204 Granitic magma transport by fracture propagation Clemens, J. D.;Mawer, C. K.
  17. Contrib. Mineral. Petrol. v.80 Nature and origin of A-type granites with particular reference to southeastern Australia Collins, W. J.;Beans, S. D.;White, A. J. R.;Chappell, B. W.
  18. J. Petro. v.29 Water-saturated and -undersaturated melting of metaluminous and peralumunous crustal compositions at 10kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences Conrad, W. K.;Nicholls, I. A.;Wall, V. J.
  19. Geology v.19 A-type granites revised: Assessment of a residual-source model Creaser, R. A.;Price, R. C.;Wormald, R. J.
  20. J. Geophys. Res. v.B86 Chemical evolution of magams in the Proterozoic terrane of the St. Francois Mountains, southern Missouri, 2. Trace element data Cullers, R. L.;Koch, R. J.;Birkford, M. E.
  21. Lithos v.26 The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis Eby, G. N.
  22. Amphiboles Ernst, W. G.
  23. Jour. Chem. Soc. The principles of distribution of chemical elements in mineral and rocks Goldschmidt, V. M.
  24. J. Petrol. v.32 Genesis of peraluminous granites. Ⅰ. Experimental investigation of melt compositions at 3 and 5Kb and various H₂O activities Holtz, F.;Johannes, W.
  25. J. Geol. Soc. Korea(sp. Pub.) v.24 Geochemistry of the Cretaceous to Early Tertiary granitic rocks in southern Korea, Pt. Ⅱ, Trace elements Geochemistry Jin, M. S.
  26. J. Geol. Soc. Korea v.20 Fission track dating of apatite from the Jurassic and Cretaceous granites in South Korea Jin, M. S.;Gleadow, A. J. W.;Lovering, J. F.
  27. KIER Res. Rept., KR-89-1C Thermal and cooling histories for the granite pluton in southeastern Korea, as revealed by K-Ar and fission track ages Jin, M. S.;Kim, S. J.;Shin, S. C.
  28. J. Petrol. v.37 no.1 Derivation of A-type granites from a dehydrated charnokitic lower crust: evidence from the Chaelundi complex, eastern Australia Landenberger, B.;Collins, W. J.
  29. J. Geol. Soc. Korea v.31 no.6 Mineralogy and Major element Geochemistry of A-type Alkali Granite in the Kyeonggj Area, Korea Lee, M. J.;Lee, J. I.;Lee, M. S.
  30. Geol. Soc. Am. Abstr. with Progr. v.11 Characteristics and origin of anorogenic granites Loiselle, M. C.;Wones, D. F.
  31. Principles of geochemistry Mason, B.;Moore, C.B.
  32. Geochim. Cosmochim. Acta v.40 Trace element distribution patterns and their relationship to crystallization of granitic melts McCarthy, T. S.;Hasty, R. A.
  33. Chem. Geol. v.77 Iron oxidation ratios, norms and the classification of volcanic rocks Middlemost, E. A. K.
  34. J. Petrol. v.25 Trace element discrimination diagram for the tectonic interpretation of granitic rocks Pearce, J. A.;Harris, N. B. W.;Tindle, A. G.
  35. Geology v.21 Dike transport of granitoid magma Petford, N.;Kerr, R. C.;Lister, Jr.
  36. Geol. Soc. Am. Bull. Fusino relations in the system $NaAlSi_3O_8$- $CaAl_2Si_2O_8$- $KAlSi_3O_8-H_2O$ and generation of granitic magmas in the Sierra Nevada Batholith Presnall, D. C.;Bateman, P. C.
  37. Geochim. Cosmochim. Acta v.7 The principles governing trace element distribution during magmatic crystallization, Part Ⅰ: The influence of electronegativity Ringwood, A. E.
  38. Contrib. Mineral. Petrol. v.107 Partial melting of two amphibollites: contrasting experimental results under fluid-absent conditions Rushmer, T.
  39. Nature v.331 Melting of vapor-absent tonalite at 10Kbar to simulate dehydration-melting in the deep crust Rutter, M. J.;Whyllie, P. J.
  40. A handbook of silicate rock analysis Sawyer, E. W.
  41. J. Petrol. v.34 Fluid-absent melting behaviour of a F-rich tonalitic gneiss at mid-crustal pressure: implications for the generation of anorogenic granites Skjerlie, K. P.;Johnstone, A. D.
  42. Geology v.108 Fluid-absent melting and the roles of fluids in the lithosphere: a slanted summary? Stevens, G.;Clemens, J. D.
  43. Mem. Geol. Soc. Japan v.25 A proposal and development of granitoid series concept Takahashi, M.
  44. The continental crust: its composition and evolution Taylor, S. R.;McLennan, S. M.
  45. Lithos v.28 Derivation of some A-type magmas by fractionation of basalitc magma: an example from the Padthaway ridge, South Australia Turner, S. P.;Foden, J. D.;Morrison, R. S.
  46. Mem. Geol. Soc. Am. Origin of granite in the light of experimental studies in the system of $NaAlSi_3O_8-KAISi_3O_8-SiO_2-H_2O$ Tuttle, O. F.;Bowen, N. L.
  47. Conrib. Mineral. Petrol. v.95 A-type granites: geochemical characteristics, discrimination and petrogenesis Whalen, J. B.;Currie, K. L.;Chappell, B. W.
  48. Goel. Soc. Am. Abst. with Progr. v.11 Source of granitic magmas White, A. J. R.
  49. Mem. Geol. Soc. Am. v.159 Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia White, A. J. R.;Chappell, B. W.
  50. Ann. rept. Geophys. Lab. v.56 Ternary feldspars. Carnegie Inst. Wash. Yoder, H. S.;Stewart, D. B.;Smith, J. R.