The Effect of Grain Boundary Diffusion on the Boundary Structure and Electrical Characteristics of Semiconductive $SrTiO_3$ Ceramics

입계확산에 의한 반도성 $SrTiO_3$ 세라믹스의 입계구조 및 전기적 특성 변화

  • 김태균 (인하대학교 무기재료공학과) ;
  • 조남희 (인하대학교 무기재료공학과)
  • Published : 1997.01.01

Abstract

Semiconductive SrTiO3 ceramic bodies were prepared by conventional ceramic powder processes in-cluding sintering in a reducing atmosphere. Sodium or potassium ions were diffused from the surface of the sintered bodies into the inner region using thermal diffusion process at 800-120$0^{\circ}C$. The effects of such ther-mal treatments on the electrical and chemical characteristics of the grain boundaries were investigated. The presence of sodium or potassium ions at grain boundaries produces non-linear current-voltage behaviors, electrical boundary potential barriers of 0.1-0.2eV, and threshold voltages of 10-70V. The diffused ions form diffusion layers with thicknesses of 20-50nm near the grain boundaries, reducing the concentration of strontium and oxygen.

SrCO3 TiO2, 그리고 Nb2O5를 출발원료로 하여 환원분위기하에서 반도성 SrTiO3 소결첼르 제조하였다. 반도성 다결정 소결체 내에서 acceptor 역할을 할 수 있는 Na과 K 이온을 입계를 따라 80$0^{\circ}C$~120$0^{\circ}C$ 온도범위에서 확산시킨 후, 열처리조건에 따른 입계의 전기적 화학적 특성을 고찰하였다. 이차열처리한 소결체의 입계에는 일정한 전기적 포텐셜장벽과 이에 상관된 전자고갈영역이 형성되어 비선형적인 전류-전압 특성을 보이고 문턱전압(threshold voltage)은 10~70V, 입계포텐셜장벽은 0.1~2eV의 크기를 나타내었다. Na과 K 이온은 입계로부터 입자내부로 확산하여 20~50 nm 깊이의 확산층을 형성하며, 이들 확산층에서 Na 또는 K과의 치환에 기인하여 Sr농도가 감소하였으며 치환에 따른 전기적 중성유지를 위하여 산소 vacancy 농도가 증가하였다.

Keywords

References

  1. High Temperature Oxides v.5 Single-crystal titanates and zirconates M. Douglas Beals;Allen M. Alper(ed.)
  2. J. Mater. Sci. v.17 Dielectric properties of donor-doped polycrystalline SrTiO₃ I. Burn;S. Neirman
  3. J. Matter. Sci. Lett v.4 Electrical conductivity of reduced polycrystalline SrTiO₃and CaTiO₃doped with yttrium oxide I. Burn;S. Neirman;N.E. Cipollini
  4. Advances in Ceramics v.1 Two-layer model explaining the properties of SrTiO₃boundary layer capacitors R. Wernicke;L.M. Levinson(ed.);D.C. Hill(ed.)
  5. J. Am. Ceram. Soc. v.64 no.12 Microstructure of SrTiO₃boundary layer capacitor material P.E.C. Franken;M.P.A. Viegers;A.P. Gehring
  6. J. Am. Ceram. Soc. v.68 no.4 Microstructures of SrTiO₃internal boundary layer capacitor during and after processing and the resultant electrical properties M. Fujimoto;W.D. Kingery
  7. J. Am. Ceram. Soc. v.68 no.11 Microstructure and electrical properties of sodium-diffused and potassium diffused SrTiO₃barrier-layer capacitors exhibiting varistor behavior M. Fujimoto;Y-M Chiang;A. Roshko;W.D. Kingery
  8. J. Appl. Phys. v.53 no.3 Compositional changes adjacent to grain boundaries during electrical degradation of a zinc oxide varistor Y.M. Chiang;W.D. Kingery;L.M. Levinson
  9. N.T.T. Res. Appl. Rept. v.16 no.5 Study of boundary layer ceramic capacitors S. Waku
  10. J. Appl. Phys. v.48 no.10 The physics of zinc oxide varistors P.R. Emtage
  11. Rev. Elecr. Commun. Lab. v.19 no.5-6 Classification and dielelctric characteristics of the boundary layer ceramic dielectrics S. Waku;A. Nishimura;T. Murakami;A. Yamaji;T. Edahiro;M. Uchidate
  12. J. Appl. Phys. v.49 no.4 The microstructural location of the intergranular metal oxide phase in a zinc oxide varistor D.R. Clarke
  13. Appl. Phys. Lett. v.40 no.6 Preparation and properties of TiO₂varistors M.F. Yan;W.W. Rhodes
  14. Ceramic Bulletin v.65 no.8 SrTiO₃-based boundary layer capacitors N. Yamaoka
  15. J. Appl. Phys. v.49 no.5 Conduction mechanism of non-ohmic zinc oxide ceramics K. Eda
  16. J. Appl. Phys. v.46 no.3 The physics of metal oxide varistors L.M. Levinson;H.R. Philipp
  17. Ceramic Bulletin v.62 no.6 SrTiO₃-based boundary layer capacitor having varistor characteristics N. Yamaoka;M. Masuyama;M. Fukui
  18. J. Am. Ceram. Soc. v.55 no.2 Lincal intercept technique for measuring grain size in two-phase polycrystalline ceramics J.C. Wurst;J.A. Nelson
  19. J. Mater. Res. v.5 no.6 Grain growth in donor-doped SrTiO₃ C-J. Peng;Y-M Chang
  20. Advances in Ceramics v.7 Electron microscopy studies of a strontium titanate based boundary layer material N. Stenton;M.P. Harmer;M.F. Yan(ed.);A.H. Heuer(ed.)
  21. Advances in Ceramics v.1 SrTiO₃BL capacitors:influence of additives and stoichiometry J. Klerk;P.J.H. Sanders;L.M.Levinson(ed.);D.C.Hill(ed.)
  22. J. Appl. Phys. v.51 no.8 Sintering and varistor characteristics of ZnO-Bi₂O₃ceramics Joe Wong
  23. J. Appl. Phys. v.50 no.6 Capacitance-vs-voltage characteristics of ZnO varistor K. Mukae;K. Tsuda;I. Nagasawa