The Effect of Diluent Gases on the Growth Behavior of CVD SiC

희석기체가 화학증착 탄화규소의 성장거동에 미치는 영향

  • Published : 1997.02.01

Abstract

Silicon carbide films were chemically vapor deposited onto graphite substrates using MTS(Ch3SiCl3) as a source and Ar or H2 as a diluent gas. The experiments were performed at a fixed condition such as a de-position temperature of 130$0^{\circ}C$, a total pressure of 10 torr, and a flow rate of 100 sccm for each MTS and carrier gas. The purpose of this study is to consider the variation of the growth behavior with the addition of each diluent gas. It is shown that the deposition rate leads to maximum value at 200 sccm addition ir-respective of diluent gases and the deposition rate of Ar addition is faster than that of H2 one. It seems that these characteristics of deposition rate are due to varying interrelationship between boundary layer thick-ness and the concentration of a source with each diluent gas addition, when overall deposition rate is con-trolled by mass transport kinetics. The preferred orientation of (220) plane was maintained for the whole range of Ar addition. However, above 200 sccm addition, especially that of (111) plane was more increased in proportion to H2 addition. Surface morphologies of SiC films were the facet structures under Ar addition, but those were gradually changed from facet to smooth structures with H2 addition. Surface roughness be-came higher in Ar, but it became lower in H2 with increasing the amount of diluent gas.

희석기체로써 Ar 및 H2를 사용하여 MTS(CH3SiCl3)를 원료물질로 한 탄화규소막을 흑연 기판 위에 화학증착시켰다. 본 연구는 증착온도 130$0^{\circ}C$, 총압력은 10 torr 및 MTS와 원료 운반기체의 총유량은 100 sccm으로 일정하게한 상태에서, 각 희석기체의 첨가에 따른 성장거동의 변화를 고찰하고자 하였다. 증착속도는 희석기체와 상관없이 첨가량이 200sccm일 때 최대값을 갖는 모양을 보였으나, Ar을 첨가할 때가 H2에 비해 더 빠른 증착속도를 나타냈다. 이러한 증착속도 특성은 전체 증착속도가 물질전달 율속단계에 있을 때, 각 희석기체의 첨가에 따라 변화되는 경막 두께(boundary layer thickness) 및 원료물질 농도의 상관관계에 기인한다고 여겨졌다. 우선배향성은 Ar의 경우 모든 첨가량의 범위에서 (220)면으로 우선배향되었으나, H2의 경우에는 200sccm이상에서 첨가량에 비례하여 (111)면으로 우선배향되는 경향을 보였다. 표면미세구조는 Ar을 첨가한 경우에 일정하게 facet구조를 유지하였으나, H2의 경우에는 facet에서 평탄한(smooth)구조로 변화되었다. 표면조도의 경우 첨가량이 늘어남에 따라 지속적으로 Ar에서는 증가하였지만, H2에서는 감소하였다.

Keywords

References

  1. J. Electrochem Soc. v.142 no.2 Influence of H₂Addition and Growth Temperature on CVD of SiC Using Hexamethyldisilane and Ar N. Nordell;S. Nishino;J W Yang;C. Jacob;P. Pirouz
  2. J. Electrochem Soc. v.141 no.3 Morphological Structure of Silicon Carbide Grown by Chemical Vapor Deposition on Titanium Carbide Using Silane and Ethylene G. B. Kruaval;J. D. Parsons
  3. J. Cryst. Growth v.24 no.25 The Growth of Hetero-Epitaxial SiC Films by Pyrolysis of Various Alkyl-Silicon Compounds Y. Avigal;M. Schieber;R. Levin
  4. J. Cryst Growth v.28 Formation of Carbon-Excess SiC from Pyrolysis of CH₃SiCl₃ F Kobayashi;K. Ikawa;K. Iwamoto
  5. J. Cryst. Growth v.87 Study of Growth Conditions of Silicon Carbide Epitaxial Layers M. S. Saidov;Kh A. Shamuratov;M. A. Kadyrov
  6. J. Vac. Sci. Technol A v.8 no.5 Chemical Vapor Deposition of SiC Layers from a Gas Mixture of CH₃SiCl₃+H₂(+Ar),and effects of the Linear Velocity and Ar addition Seiji Motojima;Mitsutaka Hasegawa
  7. J. Electrochem Soc. v.141 no.3 Morphological Structure of Silicon Carbide, Chemically Vapor Deposited on Titanium Carbide, Using Ethylene, Carbon Tetrachloride, and Silicon Tetrachloride J. D. Parsons;G. B. Kruaval
  8. J. Cryst. Growth v.125 Influence of Temperature and Tetramethylsilane Partial Pressure on the β-SiC Deposition by Cold Wall Chemical Vapor Deposition by Cold Wall Chemical Vapor Deposition R. Rodriguez-Clemente;A. Figueras;S. Garelik;B. Armas;C Combescure
  9. J. Mater. Sci. Lett. v.10 Growth of Silicon Carbide by Chemical Vapor Deposition B J. Choi;D. R. Kim
  10. 한국요업학회지 v.28 no.6 화학증착된 실리콘 카바이드 박막의 속도론적 모델 및 기계적 성질에 미치는 반응가스 분압의 영향 어경훈;소명기
  11. 한국요업학회지 v.33 no.7 화학증착 탄화규소에 의한 표면개질 김한수;최두진;김동주
  12. Handbook of Deposition Technologics for Films and Coatings(Second Edition.) Bunshah
  13. J. Electrochem. Soc. v.117 no.7 A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silane in a Horizontal Reactor F. C. Eversteyn;P. J. W. Severin;C. H. J. v. d. Brekel;H. L. Peek
  14. J. Cryst. Growth. v.160 Residence-time Dependent kinetics of CVD Growth of SiC in the MTS/H₂System A. Joseik;F. Langlais
  15. J. Electrochem. Soc. v.142 no.7 FTIR In Situ Studies of the Gas Phase Reactions in Chemical Vapor Deposition of SiC S Jonas;W. S Plak;W. Sadowski;E. Walasek;C. Paluszkiewicz
  16. J. Electrochem. Soc. v.138 no.2 Extension of One Dimensional Film Model for Chemical Vapor Deposition to Predict Selective Epitaxial Growth Rates E. D. Evans;B. Subramaniam
  17. The Propeties of Gases and Liquids(4th Edition.) Reid;Prausnitz;Poling
  18. An Introduction to Transport Phenomena in Materials Engineering Gaskell
  19. J. Mater. Sci. v.24 A Model for Development of Orientation of Vapor Deposits D. N. Lee
  20. J. Electrochem. Soc. v.137 no.11 The Effect of CH4 on CVD β-SiC Growth D. H. Kuo;D. J. Cheng;W J. Shyy
  21. J. Appl. Phys. v.79 no.10 Texture Formation in Titanium Nitride Films Prepared by Chemical Vapor Deposition H. E. Cheng;M. H. Hon
  22. Thin Solid Films v.249 Atomic Force Microscopy Study of the Microroughness of SiC Thin Films M. Blouin;D. Guay;M. A. El Khakani;M. Chaker;S. Boily;A. Jean