Movpe Growth of InP/GaAs and GalnAs/GaAs from EDMln, TBP and TBAs

EDMln, TBP와 TBAs를 이용한 InP/GaAs와 GalnAs/GaAs의 MOVPE 성장

  • Published : 1998.01.01

Abstract

The heteroepitaxial growth of InP and GaInAs on GaAs substrates has been studied by using a new combination of source materials: ethyldimethylindium (EDMIn) and trimethylgallium (TMGa) as group III sources, and tertiarybutylarsine (TBAs) and tertiarybutylphosphine (TBP) as group V sources. Device quality InP heteroepitaxial layers were obtained by using a two-step growth process under atmospheric pressure, involving a growth of an initial nucleation layer at low temperature followed by high temperature annealing and the deposition of epitaxial layer at a growth temperature. The continuity and thickness of nucleation layer were important parameters. The InP layers deposited at 500$^{\circ}$- 55$0^{\circ}C$ are all n-type, and the electron concentration decreases with decreasing TBP/EDMIn molar ratio. The excellent optical quality was revealed by the 4.4 K photoluminescence (PL) measurement with the full width at half maximum (FWHM) of 4.94 meV. Epitaxial Ga\ulcorner\ulcorner\ulcornerIn\ulcorner\ulcorner\ulcornerAs layers have been deposited on GaAs substrates at 500$^{\circ}$ - 55$0^{\circ}C$ by using InP buffer layers. The composition of GaInAs was determined by optical absorption measurements.

Keywords

References

  1. Appl. Phys. Lett v.53 H. Horikawa;Y. Ogawa;Y. Kawai;M. Sakuta
  2. Appl. Phys. Lett v.54 T. E. Crumbaker;H. Y. Lee;M. J. Hafich;G. Y. Robinson
  3. J. Appl. Phys. v.65 S. J. Pearton;K. T. Short;A. T. Macrander;C. R. Abernathy;V. P. Mazzi;N. M. Haegel;M. M. Al-jassim;S. M.Vernon;V. E. Haven
  4. J. Appl. Phys. v.65 D. S. Wuu;H. H. Tung;R. H. Hong;M. K. Lee
  5. Appl. Phys. Lett v.54 M.Sugo;M. Yamaguchi
  6. J. Appl. Phys. v.68 M. Sugo;Y. Takanashi;M. M. Al-jassim;M. Yamaguchi
  7. J. Electrochem. Soc. v.136 Y. Komaha;Y. Kadota;Y. Ohmachi
  8. Mat. Res. Soc. Symp. Proc. v.198 S. M. Vernon;C. J. Keavey;E. D. Gagnons;N. H. Karam;M. M. Al-Jassim;N. H. Haegel;V. P. Mazzi;C. R. Wie
  9. Appl. Phys. Lett. v.53 M. Razeghi;M. Defour;F. Omnes;Ph. Maurel;J. Chazelas;F. Brillouet
  10. Appl. Phys. Lett. v.53 M. Razeghi;M. Defour;R. Blondeau;F. Omnes;Ph. Maurel;O. Acher;F. Brillouet;J. C. C. Fan;J. Salerno
  11. J. Appl. Phys. v.65 M. Razeghi;F. Omnes;R. Biondeau;Ph. Maurel;M. Defour;O. Acher;E. Vassilakis;G. Mesquida;J. C. C. Fan;J. P. Salerno
  12. Appl. Phys. Lett. v.54 C. J. Keavney;S. M. Vernon;V. E. Haven;S. J. Wojtczuk;M. M. Al-Jassim
  13. Appl. Phys. Lett. v.54 C. Haacke;S. P. Watkins;H. Burkhard
  14. J. Electronic Mater. v.18 F. C. Kellert;J. s. Whelan;K. T. Chan
  15. Appl. Phys. Lett v.56 G. Haacke;S. P. Watkins;H. Burkhead
  16. J. Appl. Phys. v.65 T. Kikkawa;H. Tanaka;J. Komeno
  17. Appl. Phys. Lett. v.55 P. K. York;K. J. Beernink;J. Kim;J. J. Coleman;G. E. Fernandez;C. M. Wayman
  18. Technical Bulletin v.2 no.1 H. Jurgensen;M. Heyen
  19. J. Appl. Phys. v.57 L. D. Zhu;K. T. Chan;D. K. Wagner;J. M. Ballantyne
  20. Appl. Phys. Lett. v.49 C. H. Chen;M. Kitamura;R. M. Cohen;G. B. Stringfellow
  21. J. Electronic Mater. v.17 C. H. Chen;D. S. Cao;G. B. Stringfellow