Effect of Processing Variables on Microstructure and Critical Current Density of BSCCO Superconductors Tape

BSCCO 초전도 선재의 미세조직 및 임계전류밀도에 미치는 공정변수 효과

  • Published : 1998.11.01

Abstract

We evaluated the effect of processing variables on microstructural evolution interface irregularity between Ag sheath and superconductor core and resultant critical current density(J$_{c}$) of (Bi,Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$_{x}$(2223) superconductor tape. The value of J$_{c}$ was significantly influenced by the interface irregularity, degree of texturing and relative 2223 content. The interface became more irregular(sausage effect), while the degree of texturing gradually improved as the dimension of tape decreased during forming process. As the dimension of wire/tape were changed from diameter of 3.25 mm to thickness of 0.20 mm, J$_{c}$ value was observed to be increased by 10 times. In addition, optimum sintering temperature for improved J$_{c}$ was observed to be 835$^{\circ}C$ in a ambient atmosphere probably due to combined effect of both improved texturing and high 2223 content. Microstructural investigation showed the degree of texturing was degraded by the existence of both second phases and interface irregularity. It was observed that larger grain size and better texturing was developed near relatively flat interface compared to those inside superconducting core.ting core.

Keywords

References

  1. Appl. Phys. Lett. v.55 K. Heine;J. Tenbrink;M. Thoner
  2. JOM v.3 K. H. Sandhage;G. N. Riley, Jr.;W. L. Carter
  3. Amer. Ceram. Soc. Bull. v.72 no.7 G. N. Riley, Jr.;W. L. Carter
  4. Supercond. Sic. Technol. v.11 L. Martini
  5. Advances in Superconductivity v.Ⅵ Y. Yamada;M. Satou;T. Murase;S. Nomura;S. Murase;T. Koizumi;Y. Kamisada;T. Fujita(ed.);Y. Shiohara(ed.)
  6. International Cryogenic Materials Conference, 1994 Topical Conference : the Critical State in Superconductors Y. Yamada;T. Masegi;M. Satou;K. Yamamoto;S. Nomura;O. Horigami;H. Ogiwara;S. Kimura;T. Fujioka;T. Hasegawa;Y. Kamisada
  7. JOM v.9 U. Balachandran;A. N. Iyer;P. Haldar;L. R. Motowidlo
  8. IEEE Trans. Appl. Supercond. v.7 no.2 Q. Li;G. N. Riley, Jr.;R. D. Parrella;S. Fleshler;M. W. Rupich;W. L. Carter;J. O. Willis;J. Y. Coulter;J. F. Bingert;V. K. Sikka;J. A. Parrell;D. C. Larbalestier
  9. Appl. Phys. Lett. v.60 no.4 P. Halder;J. G. Hoehn, Jr.;J. A. Rice;C. R. Motowidlo
  10. Supercon. Sci. Technol. v.5 K. Osamura;S. S. Oh;S. Ochiai
  11. 한국재료학회지 v.7 no.2 김원주;유재근;이희균;홍계원
  12. 고온초전도학회 장건익;홍계원
  13. Appl. Supercond. v.2 Z. Han;T. Freltoft
  14. Supercond. Sci. Technol. v.10 Z. Han;P. Skov-Hansen;T. Freltoft
  15. Ph. D Thesis in Illinois Institute of Technology Jinho Joo
  16. Supercond. Sci. Technol. v.6 no.6 J. Joo;J. P. Singh;R. B. Poeppel
  17. Amer. Ceram. Soc. Bull. v.71 no.8 W. Wong-Ng;C. K. Chiang;S. W. Freiman;L. P. Cook;M. D. Hill
  18. Appl. Superconductivity v.2 no.6 J. Joo;J. P. Singh;T. Warzynski;A. Grow;R. B. Poeppel
  19. Mater. Res. Soc. Bull. Aug. E. E. Hellstrom
  20. IEEE Trans. Magn. v.27 R. Flukiger;T. Graf;M. Decroux;C. Groth;Y. Yamada
  21. Physica C v.185 Y. Yamada;J. Q. Xu;J. Kessler;E. Seibt;W. Goldacker;W. Jahn;R. Flukiger
  22. Physica C v.221 D. C. Larbalestier;X. Y. Cai;Y. Feng;H. Edelman;A. Umezawa;G. N. Riley Jr.;W. L. Carter
  23. IEEE Trans. on Appl. Supercond. v.3 no.1 B. A. Glowacki;W. Lo;J. Yuan;J. Jackiewicz;W. Y. Liang
  24. Physica C v.241 G. Grasso;B. Hensel;A. Jeremie;R. Flukiger