A Study on the Magnetic Properties and Microstructures of Mn-Ir/Ni-Fe/Zr Muti layers with Various Compositions, Thicknesses and Base Pressures

Mn-Ir의 조성과 두께 및 초기진공도에 따른 Mn-Ir/Ni-Fe/Zr 다층막의 자기적특성과 미세구조 연구

  • 노재철 (성균관대학교 금속공학과) ;
  • 최영석 (성균관대학교 금속공학과) ;
  • 이경섭 (성균관대학교 금속공학과) ;
  • 김용성 (성균관대학교 금속공학과) ;
  • 서수정 (성균관대학교 금속공학과)
  • Published : 1999.06.01

Abstract

The magnetic properties between Mn-Ir antiferromagnetic layer and Ni-Fe ferromagnetic layer have been investigated in Mn-Ir/Ni-Fe/Zr on Si wafer formed by magnetron sputtering. Mn-Ir was sputtered from Ir chips and Mn target using D.C. power, Ni-Fe and Zr were deposited from Ni-Fe and Zr targets using D.C. power under Ar atmosphere. We studied the dependence of the magnetic properties on Ir content of Mn-Ir layer for Mn-Ir/Ni-Fe bilayer, and obtained the highest $H_ex$ of 219 Oe and the low $H_c$ of 30 Oe. And then focused on the effect of base pressure for Mn-Ir containing multilayers. Our experimental data showed that if the base pressure is higher than $3.0{\times}10^{-6}\;Torr$, the exchange anisotropy of Mn-Ir/Ni-Fe/Zr disappeared probably due to the grain refining of Mn-Ir film. In addition we have studied the dependence of Zr buffer on magnetic properties of Mn-Ir/Ni-Fe/Zr multilayers, and observed that Zr buffer about (111) texture and lower $H_c$ of Mn-Ir/Ni-Fe/Zr multilayer.

본 연구에서는 마그네트론 스퍼터링 법으로 제작한 Mn-Ir/Ni-Fe/Zr/Si 다층막에서 Mn-Ir의 조성과 증착조건을 변화시키고 또한 Mn-Ir층의 두께를 조절한 후 자기적 특성과 미세구조에 대하여 고찰하였다. Mn-22at% Ir의 조성에서 219Oe의 가장 높은 Hex와 30Oe의 낮은 Hc를 얻을 수 있었다. 초기진공도가 3.0$\times$10-6Torr 이상 일때는 교환이방성이 사라지게 되었으며 이것은 Mn-Ir의 비정질화와 결정립미세화에 의한 것으로 판단된다.

Keywords

References

  1. IEEE Trans. Magn. v.32 no.4 J. C. S. Kools
  2. Phys. Rev. Lett. v.61 M. N. Baibich;J. M. Broto;A. Fert;F. Nguyen Van Dau;F. Petroff;P. Etienne;G. Creuzet;A. Friederich;J. Chazelas
  3. J. Appl. Phys. v.69 B Dieny;V. S. Speriosu;S. Metin;S S. Parkin;B.A. Gurney
  4. Phys. Rev. B. v.43 B. Dieny;V. S. Speriosu;S. S. Parkin;B A Gurney;D. R. Wilhoit;D. Mauri
  5. J. Appl. Phys. v.81 no.8 Sang-Suk Lee;Do-Guwn Hwang
  6. J. Appl. Phys. v.63 no.8 A. P. Malozemoff
  7. IEEE Trans. Magn. v.32 no.8 Chih-Huang Lai;T. C. Anthony;Eiji Iwamura;Robert L. White
  8. IEEE Trans. Mag. v.31 T. Lin;C.Tsang;R.E.Fontana;J.K Howard
  9. Jpn. J. Appl. Magn. Soc. v.22 H. N. Fuke;Y.Kamiguch
  10. Jpn. J. phys. Soc. v.31 T. Yamaoka;M.Mekata;H.Takaki
  11. J. Appl. Phys. v.81 H. N. Fuke;K. Saito;Y Kamiguchi;H Iwasaki;M. Sahashi
  12. Jpn. J. phys. Soc. v.36 Takashi Yamaoka
  13. J. Phys. Soc. Japan v.36 Takashi Yamaoka;Mamoru Mekata
  14. J. Phys. Soc. Japan v.28 Takemi Yamada;N. Kunitomu;Y. Nakai
  15. Solid State Phys. v.5 Y. Endou;Y Ishikawaw
  16. J. Appl. Phys. v.81 no.9 Susumu Soeya;H. Hoshiya;R. Arai;M. Fuyama
  17. Elements of X-ray Diffraction(2nd edition.) B. D. Cullity
  18. PhD thesis Jae-Chul Ro
  19. IEEE Trans. Magn. v.31 no.6 T. Lin;C. Tsang;R. E. Fontana;J. K. Howard
  20. J. Appl. Phys. v.79 no.3 Susumu Soeya;Moriaki Fuyama;Shigeru Tadokoro;Takao Imagawa
  21. Phys. Rev. v.105 W. H. Meiklejohn;C. P. Bean