A Study on the Selection of Measuring Mode in the Permittivity Measurement Using a Circular Cylindrical Cavity

원통형 공진기를 이용한 유전율 측정방법에서 측정모드 선택에 관한 연구

  • Lee, Won-Hui (Dept.of Electronics, Information & Communication Eng., Konkuk University) ;
  • Kang, Soon-Kuk (Dept.of Electronics, Information & Communication Eng., Konkuk University) ;
  • Choi, Hong-Ju (Dept.of Electronics, Information & Communication Eng., Konkuk University) ;
  • Hur, Jung (Dept.of Electronics, Information & Communication Eng., Konkuk University) ;
  • Lee, Sang-Young (Dept.of Physics, Konkuk University)
  • 이원희 (건국대학교 전자.정보통신공학과) ;
  • 강순국 (건국대학교 전자.정보통신공학과) ;
  • 최홍주 (건국대학교 전자.정보통신공학과) ;
  • 허정 (건국대학교 전자.정보통신공학과) ;
  • 이상영 (건국대학교 물리학과)
  • Published : 1999.04.01

Abstract

This paper describes resonant mode selection with which the relative permittivity can be measured exactly. To measure the relative permittivity, a circular cylindrical cavity filled with dielectric material is used. When the circular cylindrical cavity is filled with the dielectric material, the air gap occurs on account of machining error. Accurate relative permittivity can be obtained by using less sensitive mode in resonant frequency variation by the air gap. As a result, Average 0.009% resonant frequency variation in the vertical and the radial direction appears at $TE_{011}$ mode. It is interesting that the frequency variation by the air gap at $TE_{011}$ mode turns out to be the least sensitive.

비유전율 측정을 정확하게 할 수 있는 모드 선택 방법에 대하여 기술한다. 비유전율 측정을 위하여 유전체를 가득 채운 원통형 공진기를 이용하였다. 원통형 공진기에 유전체를 가득 채울 때 유전체의 가공오차로 인하여 틈이 발생한다. 틈에 의한 공진주파수 변화가 덜 민감한 모드를 이용하여 비유전율을 계산하면 정확히 비유전융을 구할 수 있다. 틈에 의한 공진주파수 변화를 확인하여 본 결과 $TE_{011}$모드는 높이 방향과 반지름 방향 틈에서 평균 0.009%의 공진주파수 편차를 보였다.$TE_{011}$모드는 틈에 의한 공진주파수 민감도가 기본 모드 중 가장 덜 민감하였다. $TE_{011}$모드를 이용하여 측정하면 보다 정확히 비유전율을 구할 수 있다.

Keywords

References

  1. 工業用マイクロ波應用技術 C. Shibata
  2. Dielectric Resonators D. Kajfez;P. Guillon
  3. IEEE Trans. on Microwave Theory and Techniques v.MTT-14 no.9 Microwave Measurement of High-Dielectric-Constant Materials S. B. Cohn;K. C. Kelly
  4. IEE Proceedings v.137 no.6 Computation of Q-factors of dielectric-loaded cylindrical cavity resonators M. M. Taheri;D. M. Syahkai
  5. IEEE Trans. on Microwave Theory and Techniques v.MTT-33 no.7 Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method Y. Kobayasi;M. Katoh
  6. IEEE Trans. on Microwave Theory and Techniques v.MTT-8 A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range B. W. Hakki;P. D. Coleman
  7. IEEE Trans. on Microwave Theory and Techniques v.MTT-31 no.12 Modes in Dielectric-Loaded Waveguide and Resonators K. A. Zaki;A. E. Atia
  8. IEEE Trans. on Applied Superconductivity Use of a Dielectric-loaded Cylindrical Cavity in Measurements of the Microwave Surface Resistances of High-Tc Superconducting Thin Films S. Y. Lee;B. J. Soh;J. W. Ahn;J. Y. Cho;B. H. Park;C. S. Jung;V. B. Fedorov;A. G. Denisov;Y. H. Kim;T. S. Hahn;S. S. Choi;B. Oh;S. H. Moon
  9. Time Harmonic Electromagnetic Field R. F. Harrington
  10. Field and Wave Electromagnetics D. K. Cheng
  11. Microwave Engineering D. M. Pozar
  12. IEEE Trans. on Microwave Theory and Techniques v.MTT-25 no.11 Accurate Resonant Frequencies of Dielectric Resonators P. Guillon;Y. Garault