Isolation and Characterization of Stenotrophomonas maltophilia Strains Capable of Degrading Aniline.

아닐린 분해 세균인 Stenotrophomonas maltophilia의 분리 및 특성

  • 김현주 (한국화학연구소 농약활성연구팀) ;
  • 김진철 (한국화학연구소 농약활성연구팀) ;
  • 김흥태 (한국화학연구소 농약활성연구팀) ;
  • 최경자 (한국화학연구소 농약활성연구팀) ;
  • 최도일 (생명공학연구소 식물세포공학실) ;
  • 김홍기 (충남대학교 농생물학과) ;
  • 조광연 (한국화학연구소 농약활성연구팀)
  • Published : 2000.08.01

Abstract

Four bacteria capable of using aniline as a sole source of carbon and energy we4e isolated from river waters. Among them, two strains were identified as Stenotrophomonas maltophilia based on their physiological and biochemical characteristics and 16SrRNA gene sequence and the others as delftia acidovorans. The four strains were able to grow on the mineral salt media containing aniline at concentrations up to 6,000 $\mu\textrm{g}$/ml. Since aniline degradation by S. maltophilia has not been reported so far, the two strains A-s and 51-4 were selected for further studies. They completely utilized aniline in a mineral salt medium containing 300 $\mu\textrm{g}$/ml of aniline as a sole carbon and energy source within 24 hours. Optimum pH and temperature for aniline degradation and cell growth of both strains were 7.0 and $35^{\circ}C$, respectively. In addition, they effectively degraded aniline is waste, underground and river waters containing 300 $\mu\textrm{g}$/ml of aniline. This is the first report of aniline degradation by S. maltophilia strains.

Keywords

References

  1. Agric. Biol. Chem. v.54 Microbial metabolism of aniline through a meta-cleavage pathway: isolation of strains and production of catechol-2,3-dioxygenase Aoki, K.;Y. Nakanishi;S. Murakami;R. Shinke
  2. FEMS Microbiol. Lett. v.24 Degradation of otoluidine by Rhodococcus rhodochrous Appel, M.;T. Raabe;F. Lingens
  3. FEBS Lett. v.50 no.2 Conversion of aniline into pyrocatechol by a Nocardia sp: incorporation of oxygen-18 Bachofer, R.;F. Lingens;W. Schafer
  4. ASM News v.46 no.7 Pesticide residues in humus Bartha, R.
  5. Microbiol. Ecol v.3 Aerobic versus anaerobic metabolism of halogenated anilines by a Paracoccus sp Bollag, J. M.;S. Russel
  6. Can. J. Microbiol. v.26 Presence de Pseudomonas mallophilia dans la rhizosphere de quelques plantes cultivees Debette, J.;R. Blondeau
  7. J Gen. Microbiol. v.137 Degradation of 2-methylaniline and chlorinated isomers of 2-methylaniline by Rhodococcus rhodochrous strain CTM Fuchs, K.;A. Schreiner;F. Lingens
  8. Manual of Clinical Microbiology(3rd ed) Pseudomonas Hugh, R.;G. L. Gilardi;E. H. Lenette(ed.);E. H. Spaulding(ed.);J. P. Truant(ed.)
  9. Z. Allg. Mikrobiol. v.24 Incorporation of $^{18}O_2$ during cometabolic degradation of 3-chloroaniline by Rhodococcus sp. An 117 Janke, D.;B. P. Baskunov;M. Y. Nevedova;A. M. Ztakun;L. A. Golovleva
  10. Bergey's Manual of Determinative Bacteriology(9th ed.) John, G. H.;N. P. Krieg;P. H. A. Sneath
  11. Z. Allg Mikrobiol. v.23 Degradation of aniline and monochloroanilines by Rhodococcus sp. An 117 and a pseudomonad: a comparative study Kaminski, U.;D. Janke;H. Prauser;W. Fritsche
  12. J. Agric. Food Chem. v.20 3,3',4,4'-Tetrachloroazoxybenzene from 3,4-dichloroaniline in microbial culture Kaufman, D. D.;J. R. Plimmer;J. Iwan;U. I. Klingebiel
  13. J. Agric. Food Chem. v.21 Microbial oxidation of 4-chloroaniline Kaufman, D. D.;J. R. Plimmer;U. I. Klingebiel
  14. FEMS Microbiol. Lett. v.111 Isolation and characterization of a subsurface bacterium that degrades aniline and methylanilines Konopka, A.
  15. Arch. Microbiol. v.140 Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange Latorre, J.;W. Reineke;H.-J. Knackmuss
  16. Arch. Microbiol. v.155 Degradation of aniline and monochlorinated anilines by soil-born Pseudomonas acidovorans strains Loidl, M.;C. Hinteregger;G. Ditzelmuller;A. Ferschl;F. Streichsbier
  17. Appl. Environ. Microbiol. v.48 Mechanisms and pathways of aniline elimination from aquatic enviroments Lyons, C. D.;S. Katz;R. Barth
  18. J. Cell Biochem v.161 New opportunities for screening and early detection of bladder cancer Mason, T. J.;W. P. Walsh;K. Lee;W. Vogler
  19. J. Agric. Food Chem. v.28 Photolysis of 3,4-dichloroaniline in natural waters Miller, G. C.;R. Zisook;R. Zepp
  20. J. Agric. Food Chem. v.25 Chemical transformation of 4-chloroaniline to a triazole in a bacterial culture medium Milnard, R. D.;S. Russel;J.-M. Bollag
  21. Arch. Environ. Contam. Toxicol v.30 no.3 Toxicity of 4-chloroaniline in early life-stages of zebrafish (Brachydanio rerio) Oulmi, Y.;T. Braunbeck
  22. Appl. Microbiol. Biotechnol. v.49 Biodegradation of nitrobenzene by its simultaneous reduction into aniline and mineralization of the aniline formed Peres, C. M.;H. Naveau;S. N. Agathos
  23. J. Agric. Food Chem. v.18 1,3-Bis-(3,4-dichlorophenyl)-triazene from propanil in soils Plimmer, J. R.;P. C. Kearney;H. Chisaka;J. B. Yount;U. K. Klingebiel
  24. FEMS Microbiol. Lett. v.25 Degradation of p-toluidine by Pseudomonas testosteroni Raabe, T.;M. Appel;F. Lingens
  25. Eur. J. Appl. Microbiol. Biotechnol. v.7 Comparative studies on the metabolism of aniline and chloroaniline by Pseudomonas multivorans strain An 1 Rever, H.;V. Helm;N. G. K. Karanth
  26. J. Agric. Food Chem. v.18 FMN-sensitized photolysis of chloroanilines Rosen, J. D.;M. Siewierski;G. Winnett
  27. Acta Microbiol. Pol. v.26 Formylation and acetylation of 4-chloroaniline by a Streptomyces sp Russel, S.;J. M. Bollag
  28. Molecular Cloning: a Laboratory Manual(2nd ed.) Sambrook, J.;E. F. Fritsch;T. Maniatis
  29. Carcinogenesis v.17 no.4 Neoplastic transformation and DNA-binding of 2-chloroaniline in SV40-immortalized human uroepithelial cell lines Swaminathan, S.;S. M. Frederickson;J. F. Hatcher;C. A. Reznikoff;M. A. Butler;K. L. Cheever;R. E. Savage
  30. Science v.168 Metabromuron: acetylation of aniline moiety as a detoxification mechanism Tweedy, B. G.;C. Loeppky;J. A. Ross
  31. BTF-Biotech-Forum v.4 Germentationsverfahren zum Abbau von Toluidin und Chlorotoluidin Voleskow, H.
  32. Int. J. Syst. Bacteriol. v.49 Phylogenetic relationship among members of the Comamonadaceae, and description of Delftia acidovorans(den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov Wen, A.;M. Fegan;C. Hayward;S. Chakraborty;L. I. Sly
  33. Toxicol. Lett. v.87 no.1 Suitability of different cytoxicity assay for screening combination effect of environmental chemicals in human fibroblasts Witte, L.;H. Jacobi;U. Juhl Strauss
  34. Chemosphere v.10 Comparison of photochemical behavior of various humic substances in water. I. Sunlight induced reaction of aquatic pollutants photosensitized by humic substances Zepp, R. G.;G. L. Baughman;P. E. Schlotzhauer
  35. Pestic. Biochem. Physiol. v.17 Microbial degradation of para-chloroaniline as a sole carbon and nitrogen source Zeyer, J.;P. C. Kearney
  36. Appl. Environ. Microbiol. v.50 Microbial mineralization of ring-substituted aniline through an ortho-cleavage pathway Zeyer, J.;A. Wasserfallen;K. N. Timmis