Finite-Difference Time-Domain Approach for the development of an Equivalent Circuit for a Single Step Microstrip Discontinuity in the Substrate

FDTD 방법을 이용한 단일 계단형 마이크로스트립 기판 불연속의 등가회로 개발

  • 전중창 (위덕대학교 정보통신공학과) ;
  • 김태수 (위덕대학교 정보통신공학과) ;
  • 한대현 (동의대학교 전자공학과) ;
  • 박위상 (포항공과대학교 전자전기공학과)
  • Published : 2000.10.01

Abstract

The finite-difference time-domain (FDTD) method is applied to analyze a single step microstrip discontinuity in the substrate, and an equivalent circuit model comprised of two inductors and a capacitor has been developed using the numerical results. The microstrip discontinuity newly introduced in this paper has a thickness change of the substrate in the longitudinal direction with a uniform strip width. The discontinuity can be applied to the feeding circuit design for the patch antennas and interconnections between microwave circuit modules. The simulation results are compared with those computed by HFSS, and two results showed a good agreement. An equivalent circuit developed from the FDTD results, which is accurate within 2.4% in magnitudes of $S_{11}$ and $S_{21}$,can be applied for the computer-aided design of microwave circuits.

본 논문에서는 유한차분 시간영역 방법을 적용하여 단일 계단형 마이크로스트립 기판 불연속 구조를 해석하였으며, 이 결과를 사용하여 LC 등가회로를 구성하였다. 본 논문에서 제안된 구조는 마이크로스트립 선로의 길이 방향으로 계단형 기판 불연속을 가지며, 패치 안테나의 급전선, 회로 모듈간 연결 등에 적용될 수 있다. FDTD 해석결과는 HFSS를 이용하여 얻어진 결과와 비교하여 잘 일치함을 보였다. 개발된 등가회로는 S11과 S21 모두 2.4% 이내의 정확도를 가지며, 마이크로파 회로의 CAD 설계에 응용될 수 있다.

Keywords

References

  1. Int. J. Electronics v.45 no.1 Microstrip discontinuities R. Grag;I. J. Bahl
  2. IEEE Trans. Microwave Theory Tech. v.28 no.11 Microstrip discontinuity capacitances and inductances for double steps, mitered bends with arbitrary angle, and asymmetric right-angle bends P. Anders;F. Arndt
  3. IEEE Trans. Microwave Theory Tech. v.36 no.12 Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities X. Zhang;K. K. Mei
  4. IEEE Proc. v.128 no.1 Design of microstrip antenna feeds, Part 1: Estimation of radiation loss and design implications A. Henderson;J. R. James
  5. IEEE Trans. Microwave Theory Tech. v.43 no.1 Analysis, synthesis, and experimental validation of a new type of microstrip transition F. Masot;F. Medina;M. Horno
  6. Microwave Optical Technology v.7 no.6 3-D FDTD characterization of interconnections between MMIC and MIC modules S. Visan;O. Picon;V. Fouad Hanna
  7. IEEE Trans. Microwave Theory Tech. v.44 no.9 Analysis of a double step microstrip discontinuity in the substrate using the 3-D-FDTD method J. C. Chun;W. S. Park
  8. IEEE Trans. Antennas Propagt. v.14 Numerical solution of initial boundary value problem including Maxwell's equations in isotropic media K. S. Yee
  9. Microwave Engineering D. M. Pozar
  10. The Finite-Difference Time-Domain Method Computational Electrodynamics A. Taflov
  11. IEEE Trans. Microwave Theory Tech. v.23 no.8 Numerical solution of Steady state electromagnetic scattering problems using the time-dependent Maxwell’s equations A. Taflov;M. E. Brodwin
  12. Microwave Optical Technology Lett. v.7 no.17 Application of the discrete Fourier transform in the 2-D-FDTD method J. C. Chun;W. S. Park
  13. High-Frequency Structure Simulator