Deposition of ZnO Thin Films by RF Magnetron Sputtering and Cu-doping Effects

RF 마그네트론 스퍼터링에 의한 ZnO박막의 증착 및 구리 도우핑 효과

  • Lee, Jin-Bok (Dept. of Electrical Engineering, Hanyang University) ;
  • Lee, Hye-Jeong (Dept. of Electronic Electrical Control Instrumentation Engineering, Hanyang University) ;
  • Seo, Su-Hyeong (Deparment of Physics and Center for Electronic Materials and Components) ;
  • Park, Jin-Seok (Dept. of Electronic Computer Engineering, Engineering Collage, Hanyang University)
  • 이진복 (한양대 전기공학과) ;
  • 이혜정 (한양대 전자전기제어계측공학과) ;
  • 서수형 (한양대 전자재료 및 부품 연구센터 Post-Doc) ;
  • 박진석 (한양대 전자컴퓨터학부)
  • Published : 2000.12.01

Abstract

Thin films of ZnO are deposited by using an RF magnetron sputtering with varying the substrate temperature(RT~39$0^{\circ}C$) and RF power(50~250W). Cu-doped ZnO(denoted by ZnO:Cu) films have also been prepared by co-spputtering of a ZnO target on which some Cu-chips are attached. Different substrate materials, such as Si, $SiO_{2}/Si$, sapphire, DLC/Si, and poly-diamond/Si, are employed to compare the c-axial growth features of deposited ZnO films. Texture coefficient(TC) values for the (002)-preferential growth are estimated from the XRD spectra of deposited films. Optimal ranges of RF powers and substrate temperatures for obtaining high TC values are determined. Effects of Cu-doping conditions, such as relative Cu-chip sputtering areas, $O_{2}/(Ar+O_{2})$ mixing ratios, and reactor pressures, on TC values, electrical resistivities, and relative Cu-compositions of deposited ZnO:Cu films have been systematically investigated. XPS study shows that the relative densities of metallic $Cu(Cu^{0})$ atoms and $CuO(Cu^{2+})$-phases within deposited films may play an important role of determining their electrical resistivities. It should be noted from the experimental results that highly resistive(> $10^{10}{\Omega}cm$ ZnO films with high TC values(> 80%) can be achieved by Cu-doping. SAW devices with ZnO(or Zn):Cu)/IDT/$SiO_{2}$/Si configuration are also fabricated to estimate the effective electric-mechanical coupling coefficient($k_{eff}^{2}$) and the insertion loss. It is observed that the devices using the Cu-doped ZnO films have a higher $k_{eff}^{2}$ and a lower insertion loss, compared with those using the undoped films.

Keywords

References

  1. J.Koike, H.Tanaka, and H.Ieki, 'Quasi-microwave band longitudinally coupled surface acoustic wave resonator filters using ZnO/sapphire substrate,' Jpn. J. Appl. Phys., Vol. 34 (1995) pp. 2678-2682 https://doi.org/10.1143/JJAP.34.2678
  2. S.J.Chang, Y.K.Su, and Y.P.Shei, 'High quality ZnO thin films on InP substrate prepared by radio frequency magnetron sputtering. II. surface acoustic wave device fabrication,' J. Vac. Sci. Tech. A 13(2), (1995) pp. 385-388 https://doi.org/10.1116/1.579368
  3. 이용의, 양형국, 김영진, 한정인, 김형준, 'RF 마그네트론 스퍼터링에 의한 ZnO 박막 증착 및 SAW 필터 특성 분석,' 한국재료학회지, Vol. 4, No. 7 (1994) pp. 783-791
  4. H.Nakahata, A.Hachigo, K.Higaki, S.Fuhii, S.Shikata, and N.Fujimori, 'Theoretical study on SAW characteristics of layered structures including a diamond layer,' IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 42, No. 2, (1995) pp. 362-374 https://doi.org/10.1109/58.384444
  5. T.Mitsuyu, S.Ono, and K.Wasa, 'Structures and SAW properties of rf-sputtering single -crystal films of ZnO on sapphire,' J. Appl. Phys. Vol. 51 (5) (1980) pp. 2464-2470 https://doi.org/10.1063/1.328019
  6. 이승환, 성영권, 김종관, 'Magnetron sputtering으로 증착한 ZnO박막의 특성과 열처리에 따른 비저항과 미세구조,' 한국전자재료학회지, Vol. 10, No. 2, (1997) pp. 126-133
  7. M.Wu, W.Shih, and W.Tsai, 'Growth of ZnO thin films on interdigital transducer/corning 7059 glass substrates by two-step fabrication methods for surface acoustic wave application,' J. Phys. D: Appl. Phys. Vol. 31, (1998) pp. 943-950 https://doi.org/10.1088/0022-3727/31/8/004
  8. A.Hartmann, M.K.Puchert, and R.N.Lamh, 'Influence of copper dopants on the resistivity of ZnO films,' Surface and Interface Analysis, Vol. 24 (1996) pp. 671-674 https://doi.org/10.1002/(SICI)1096-9918(19960916)24:9<671::AID-SIA165>3.0.CO;2-D
  9. A.E.Jimenez-Gonzalez, 'modification of ZnO thin films by Ni, Cu, and Cd doping,' J. of Solid State Chemistry Vol. 128, (1997) pp. 176-180 https://doi.org/10.1006/jssc.1996.7166
  10. 박창균, 엄현석, 서수형, 박진석, '거울형 자계 구조를 갖는 진공 여과 아크 증착법을 이용한 다이아몬드상 탄소 박막의 증착 및 물성 분석,' 대한전기학회 2000하계학술대회 논문집, C (2000) pp. 1717-1719
  11. 이진복, 박진석, 류경선, 권상직, 'MPCVD를 이용한 다결정 다이아몬드 박막의 증착 및 물성 분석,' 대한전기학회 98하계학술대회 논문집, D (1998) pp. 1330-1332
  12. B.T Khuri-Yakub and J.G.Smits, 'Reactive magnetron sputtering on ZnO' IEEE Ultrasonics Symp. (1980) pp. 801-804
  13. F.S.Hickernell, 'ZnO process for Bulk-and Surface-wave devices,' IEEE Ultrasonics Symp. (1980) pp. 785-794
  14. D.K.Murti and T.L.Biuhm, 'Preferred orientation of ZnO films controlled by RF sputtering,' Thin Solid Films, Vol. 87, (1982) pp. 57-61 https://doi.org/10.1016/0040-6090(82)90571-5
  15. C.R.Aita, A.J.Purdes, R.J.Lad, and P.D.Funkenbusch, 'The effect of $O_2$ on reactively sputtered zinc oxide,' J. Appy. Phys., Vol. 51 (10) (1980) pp. 1768-1772
  16. K.H.Yoon, J.W.Choi, and D.H.Lee, 'Characteristics of ZnO thin films deposited onto Al/Si substrates by r.f. magnetron sputtering,' Thin Solid Films, Vol. 302, (1997) pp. 116-121 https://doi.org/10.1016/S0040-6090(96)09568-5
  17. K.Wasa and S.Hayakawa, 'Handbook of sputter deposition technology: principles, technology and applications,' Materials Science and Process Technology Series, (Edited by R.F.Bunshah, et al., 1991) pp. 125-153
  18. 이용의, 김형준, 양형국, 박준섭, 박종철, 김영진, 'ZnO 박막과 유전체 박막으로 구성된 이중구조의 물성 및 표면 탄성파 특성,' Korean J. Crst., Vol. 6, No. 22, (1995) pp. 134-140
  19. M.K.Puchert, A.Hartmann, and R.N.Lamb, 'Highly resistive sputtered ZnO films implanted with copper,' J. Mater. Res., Vol. 11, No. 10, (1996) pp. 2463-2469
  20. M.Kadota and M.Minakata, 'Piezoelectric properties of Zinc oxide films on glass substrates deposited by RF-magnetron-mode electron cyclotron resonance sputtering system,' IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 42, No. 3, (1995) pp. 345-350 https://doi.org/10.1109/58.384442