Environmental Isotope Characteristics of $CO_2$-rich Water in the Kangwon Province

강원도지역 탄산수의 환경동위원소적 특성

  • Published : 2000.12.01

Abstract

Environmental isotope $^{18}O$, $^{2}H$, $^{3}H$,$^{13}C$, $^{34}S$and $^{87}Sr/^{86}Sr$) studies on ${CO_2}$-rich waters in the Kangwon Province were carried out to elucidate the origin, residence time, water-rock interaction and mixing process of their. ${\delta}^{18}O$ and ${\delta}D$ data indicate that ${CO_2}$-rich waters were derived from the local meteoric water. It also shows that each type of ${CO_2}$-rich water has distinct isotopic composition and Na-${HCO_3}$ type water (-10.8 to -12.1${\textperthousand}$, ${\delta}^{18}O$ ) is lighter than other type waters. These depleted isotopic values supposedly indicate that, considering the altitude effect of isotope in Korea, the recharge area of Na-${HCO_3}$ type water can be estimated to be relatively higher in elevation than those of Ca-${HCO_3}$ and Ca-Na-${HCO_3}$ type waters. Tritium contents close to zero are observed in the Na-${HCO_3}$ type water, confirming a long residence time and the possibility of a ${CO_2}$ inflow into the aquifer at great depth. These isotope data also show that the Ca-${HCO_3}$ type water has undergone mixing process with surface water during ascending at depth, whereas Na-${HCO_3}$ type water was less mixed with surface waters. The carbon isotope data (-8.8 to +0.8 ${\textperthousand}$ ${\delta}^{13}C$) indicate that dissolved carbon in the ${CO_2}$-rich waters was possibly derived from deep seated ${CO_2}$ gas. The high ${\delta}^{34}S$ values (up to 38.1${\textperthousand}$) of dissolved sulfates suggest that sulfate reduction by microbial activity had occurred at depth. Strontium isotopic data ($^{87}Sr/^{86}Sr$) of ${CO_2}$-rich waters indicate that the chemistry of the ${CO_2}$-rich waters is determined by water-rock (granite) interaction.

Keywords