DOI QR코드

DOI QR Code

Influence of Thermal Aging in Change of Crosslink Density and Deformation of Natural Rubber Vulcanizates


Abstract

Crosslink is the most important chemistry in a rubber vulcanizate. Degree and type of crosslinks of the vulcanizate determine its physical properties. Change of crosslink density and deformation of a rubber vulcanizate by thermal aging were studied using natural rubber (NR) vulcanizates with various cure systems (conventional, semi-EV, and EV) and different cure times (under-, optimum-, and overture). All the NR vulcanizates were deformed by the thermal aging at 60-100 $^{\circ}C.$ The higher the aging temperature is, the more degree of the deformation is. The undercured NR vulcanizates after the thermal aging were deformed more than the optimumand overcured ones. The NR vulcanizates with the EV cure system were less deformed than those with the conventional and semi-EV cure systems. The deformation of the NR vulcanizates was found to be due to change of the crosslink density of the vulcanizates. The crosslink densities of all the vulcanizates after the extraction of organic materials were also changed by the thermal ging. The sources to change the crosslink densities of the vulcanizates by the thermal aging were found to be dissociation of the existing sulfur crosslink and the formation of new crosslinks by free sulfur, reaction products of curing agents, and pendent sulfide groups.

Keywords

References

  1. SAE v.37 Ohta, M.;Nichida, T.;Suzuki, K.;Uehara, M.
  2. Tire Technology International v.18 Chance, B. K.;Metters, J. J.
  3. Rubber Chem. Technol. v.57 no.63 Morrison, N. J.;Porter, M.
  4. Rubber Chem. Technol. v.65 no.211 Layer, M. R.
  5. Rubber Chem. Technol. v.66 no.3786 Krejsa, M. R.;Koenig, J. L.
  6. J. Macro. Sci.-Revs. Macro. Chem. v.C21 no.313 Chakraborty, S. K.;Bhowmick, A. K.;De, S. K.
  7. Rubber Chem. Technol. v.68 no.717 Van Duin, M.;Souphanthog, A.
  8. Kor. Polym. J. v.5 no.39 Choi, S.-S.
  9. Rubber Chem. Technol. v.43 no.1215 Cunneen, J. L.;Russell, R. M.
  10. Rubber Chem. Technol. v.20 no.315 Morley, J. F.;Seott, J. R.
  11. Rubber Chem. Technol. v.65 no.488 Sullivan, A. B.;Hann, C. J.;Kuhis, G. H.
  12. Rubber Chem. Technol. v.39 no.1115 Milligan, B.
  13. Rubber Chem. Technol. v.67 no.76 Hann, C. J.;Sullivan, A. B.;Host, B. C.;Kuhls, Jr., G. H.
  14. Rubber Chem. Technol. v.37 no.679 Coran, A. Y.
  15. Rubber Chem. Technol. v.67 no.348 Kreja, M. R.;Koenig, J. L.;Sullivan, A. B.
  16. Rubber Chem. Technol. v.30 no.962 Krebe, H.
  17. J. Poly. Sci.;Polym. Chem. Ed. v.16 no.2971 Das, C. K.;Banerjee, S.
  18. Anal. Chem. v.36 no.1812 Humphrey, R. E.;Hawkins, J. M.
  19. Anal. Chem. v.37 no.164 Humphret, R. E.;Potter, J. L.
  20. J. Appl. Polym. Sci. v.51 no.169 Gradwell, M. H. S.;McGill, W. J.
  21. J. Chem. Soc. Dalton Trans. Mccleverty, J. A.;Morrison, N. J.;Spencer, N.;Ash-worth, C. C.;Bailey, N. A.;Johnson, M. R.;Smith, J. M.A.;Tabiner, B. A.;Taylor, C. R.
  22. J. Appl. Polym. Sci. v.61 no.1131 Gradwell, M. H. S.;McGill, W. J.
  23. J. Appl. polym. Sci. v.61 no.1515 Gradwell, M. H. S.;Mcgill, W. J.
  24. Rubber Chem. Technol. v.57 no.97 Morrison, N. J.
  25. Rubber Chem. Technol. v.43 no.572 Parks, C. R.;Parker, D. K.;Chapman, D. A.;Cox, W. L.
  26. Rubber Chem. Technol. v.45 no.467 Parks, C. R.;Parker, D. K.;Chapman, D. A.
  27. Rubber Chem. Technol. v.60 no.278 Zaper, A. M.;Koenig, J. L.

Cited by

  1. Thermal Aging Behaviors of Elemental Sulfur-Free Polyisoprene Vulcanizates vol.26, pp.11, 2000, https://doi.org/10.5012/bkcs.2005.26.11.1853
  2. Fabrication and characterization of electrospun polybutadiene fibers crosslinked by UV irradiation vol.101, pp.4, 2000, https://doi.org/10.1002/app.23764
  3. Influence of TESPT content on crosslink types and rheological behaviors of natural rubber compounds reinforced with silica vol.106, pp.4, 2007, https://doi.org/10.1002/app.25744
  4. Recovery prediction of thermally aged chloroprene rubber composite using deformation test vol.110, pp.6, 2000, https://doi.org/10.1002/app.28866
  5. Strain effect on recovery behaviors from circular deformation of natural rubber vulcanizate vol.114, pp.2, 2000, https://doi.org/10.1002/app.30699
  6. Influence of filler and cure systems on thermal aging resistance of natural rubber vulcanizates under strained condition vol.118, pp.5, 2000, https://doi.org/10.1002/app.32738
  7. Preparation of Ultrafine Ethylene/Propylene/Diene Terpolymer Rubber Fibers by Coaxial Electrospinning vol.297, pp.4, 2000, https://doi.org/10.1002/mame.201100166
  8. Influence of Aging Media and Filler System on Recovery Behaviors of Natural Rubber Composites vol.47, pp.2, 2000, https://doi.org/10.7473/ec.2012.47.2.156
  9. Recovery Behaviors of Natural Rubber Composites Thermally Aged in Altering Medium Systems of Air and Water vol.48, pp.3, 2000, https://doi.org/10.7473/ec.2013.48.3.181
  10. Use of ground pistachio shell as alternative filler in natural rubber/styrene–butadiene rubber‐based rubber compounds vol.35, pp.2, 2000, https://doi.org/10.1002/pc.22656
  11. Microstructural analysis and cis-trans isomerization of BR and SBR vulcanizates reinforced with silica and carbon black using NMR and IR vol.4, pp.59, 2000, https://doi.org/10.1039/c4ra03682d
  12. Analytical considerations for determination of the microstructures of sulfur‐cured solution styrene − butadiene rubbers vol.66, pp.6, 2017, https://doi.org/10.1002/pi.5318
  13. The deterioration of foamed silicone rubber in humid and hot environments vol.55, pp.6, 2019, https://doi.org/10.1177/0021955x19864401