On Electric Field Induced Processes in Ionic Compounds

  • Schmalzried, H. (Institue fur Physikalische Chemieund Elektrochemie, Universitat Hannover)
  • Published : 2001.06.01

Abstract

The behaviour of ionic compound crystals under combined chemical and externally applied electrical potential gradients is discussed. Firstly, a systematic overview is given. Then a formal analysis follows. The transport equations of the ions and the electric defects predict that even with reversible electrodes demixing, and in particular decomposition of the compound will occur if the applied d.c. current density is sufficiently high. These predictions are illustrated by appropriate experiments. With the help of the solid solution (Me, Fe)O, where Fe-ions are the dilute species, we investigate experimentally the behaviour of a ternary ionic crystal under a d.c. electric current load. All the compounds were placed in a galvanic cell, and the internal reactions which then could be observed were driven by the electric field in this cell. In addition, we discuss the influence of the electric field on the classical solid state reaction AX+BX=ABX$_2$, if again the reaction couple is placed in a galvanic cell.

Keywords

References

  1. Chemical Kinetics of Solids H. Schmalzried
  2. Z. Phys. Chem. NF. v.161 Spinel Formation-A Detailed Analysis T. Pfeiffer;H. Schmalzried
  3. Z. Naturforsch. v.34a Crystalline Oxide Solid Solutions in Oxygen Potential Gradients H. Schmalzried;W. Laqua;P. L. Lin
  4. Ph. D Thesis, Universit$\ "{a}$t Hannover T. Grosse
  5. Solid State Ionics v.82 Determination of Local Potentials in Mixed Conductors-two Examples C. Rosenkranz;J. Janek
  6. J. Electrochem. Socl v.143 no.10 Analytic Solution for Charge Transport and Chemical-potential Variation in Single-layer and Multilayer Devices of Different Mixed-conducting Oxide S. Yuan;M. Pal
  7. J. Electrochem. Soc. v.138 no.5 Theoretical Analysis of Solid Oxide Fuel Cells with Two-layer, Composite Electrolytes:Electrolyte Stability A. V. Virkar
  8. Chemical Kinetics of Solids H. Schmalzried
  9. Ber. Bunsenges. Phys. Chem. v.92 Local Defect Equilibria-The ConceptualDifficulties in Treating Solid State Reaction Kinetics T. Pfeiffer;H. Schmalzried;Y. Ueshima
  10. Phys. Stat. Sol. v.146 no.1 Driven Internal Solid State Reactions-A Decoration Technique U. Stilkenbohmer;H. Schmalzried
  11. J. Janek;C. Korte
  12. J. Mater. Sci. v.22 Internal Reactions in the (Mg, Me)O System D. Ricoult;H. Schmalzried
  13. Z. Elektrochem. v.60 no.4 Galvanishe Zellen mit Festen Elecktrolyten mit Gemischter Stromleitung C. Wagner
  14. Z Phys. Chem. NF v.172 Elektrochemische Untersuchungen an der Polarisationskette Af/AgBr/Pt T. Grosse;H. Schmalzried
  15. Bull. Chem. Soc. Jpn. v.4892 An Investigation of the Gebb-Wagner's d-c Polarization Technique Ⅰ. Steadystate Chemical Potential Profiles in Solid Electrolytes J. Mizusaki;K. Fueki;T. Mukaibo
  16. Ber. Bunsenges. Phys. Chem. v.87 Internal and External Oxidation of Noncrystalline Compunds and Solid Solution (Ⅰ) H. Schmalzried
  17. J. Chem. Phys. v.20 Electrical Conductivity of Silver Surfide M. H. Hebb
  18. Ph. D Thesis, Universit$\ "{a}$t Hannover U. Stilkenbohmer
  19. Festk rperthermodynamik H. Schmalzried;A. Navrotsky
  20. Diffusion and Defect Forum v.1683 Tracer Diffusion and Electrotransport in Indium-doped Cobaltous Oxide $(Co_{1-x}In_x)_{1-δ}O M. Schroder;M. Martin
  21. Mater. Sci. Rep. v.7 Transport and Degradation in Transition Metal Oxides in Chemical Potential Gradients M. Martin
  22. Ph. D Thesis, Universit$\ "{a}$t Hannover S. Smolin