Survival of Bifidobacterium breve in Acidic Solutions and Yogurt, Following Immobilization in Calcium Alginate Beads

  • Lee, Ki-Yong (Department of Biological Engineering, Inha University) ;
  • Kim, Ji-Youn (Department of Biological Engineering, Inha University) ;
  • Yu, Won-Kyu (Department of Biological Engineering, Inha University) ;
  • Lee, Yoon-Jong (Department of Biological Engineering, Inha University) ;
  • Yoon, Sung-Sik (Department of Biological Resources and Technology, Yonsei University) ;
  • Heo, Tae-Ryeon (Department of Biological Engineering, Inha University)
  • Published : 2001.06.01

Abstract

Sodium alginate was used to immobilize Bifidobacterium breve ATCC 15700 cells. The ability of the Ca-alginate beads to protect the B. breve ATCC 15700 was evaluated under different conditions including alginate concentration, bead size, pH, hydrogen peroxide, and storage period. The survival of the B. Breve ATCC 15700 was estimated in pasteurized yogurt, containing either the immobilized or free cells, throughout the storage period. The survival cells in bead after exposure to acidic solution (pH 3.0) increased with increase of both the alginate gel concentration and bead size. Also, immobilized cells in alginate bead were more resistant than the free cells to hydrogen peroxide, storage period, and the environment inside yogur. When retreated beads with skim milk and nonretreated beads were tested in acidified pH 3.0 TPY media including acetic and lactic acid, the number of viable cells in the retreated bead was approximately 10-fold higher than that of nonretreated beads. This suggests that the skim milk operated as a material decreasing the diffusion of acid and hydrogen perosicde into alginate gels. From this research, it was found that yogurt itself supported immobilized cells with an improved protection from the extreme acidity in yogurt.

Keywords

References

  1. Int. J. Food Microbiol. v.46 The effect of probiotic strains on the microbiota of the simulator of the human intestinal microbial ecosystem Alander, M.;I. De Smet;L. Nollet;W. Verstraete;A. von Wright;T. Mattila-Sandholm
  2. Biotechnol. Bioeng. v.38 Diffusion of lactose in k-carrageenan/locust bean gum gel beads with or without entrapped growing lactic acid bacteria Arnaud, J. P.;C. Lacroix
  3. J. Dairy Sci. v.74 Bifidobacterium from fermented milks: Survival during gastric transit Berrada N.;J. F. Lemeland;G. Laroche;P. Thouvenot;M. Piaia
  4. Biotechnol. Prog. v.9 Effect of chelatants on gellan gel rheological properties and setting temperature for immobilization of living bifidobacteria Camelin, I.;C. Lacroix;C. Paquin;H. Prevost;R. Cachon;C. Divies
  5. Appl. Microbiol. Biotechnol. v.37 Lipid content of Saccharomyces cerevisiae strains with different degrees of ethanol tolerance Castillo-Agudo, L. D.
  6. Biotechnol. Bioeng. v.41 Diffusivity of Cu2+ in calcium alginate gel beads Chen, D.;Z. Lewandowski;F. Roe;P. Surapaneni
  7. J. Nutr. v.125 Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics Gibson, G. R.;M. B. Roberfroid
  8. J. Food Prot. v.40 Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures Gilliland, S. E.;M. L. Speck
  9. Biotechnol. Bioeng. v.42 Membrane formation by interfacial cross-linking of chitosan for microencapsulation of Lactococcus lactis Groboillot, A. F.;C. P. Champagne;G. D. Darling;D. Poncelet;R. J. Neufeld
  10. Biotechnol. Bioeng. v.28 Diffusion coefficients of glucose and ethanol in cell-free and cell-occupied calcium alginate membranes Hannoun, B.;G. Stephanopoulos
  11. Appl. Microbiol. Biotechnol. v.34 Relationship between fermentation capability and fatty acid composition of free and immobilized Saccharomyces cerevisiae Hilge-Rotmann, B.;H. Rehm
  12. Food Microbiol. v.41 Bifidobacteria: Activity and potential benefits Hoover, D. G.
  13. Food Technol. v.44 Bifidobacteria: Their potential for use in American dairy products Hughes, D. B.;D. G. Hoover
  14. J. Microbiol. Biotechnol. v.9 Isolation and characterization of lactate-tolerants in Bifidobacterium breve Hyun, H. H.;H. H. Lee;I. H. Yeo;T. S. Kim;J. H. Lee
  15. Food Technol. v.47 Bifidobacteria: Research and development in Japan Ishibashi, N.;S. Shimamura
  16. Bifido. Microflora v.12 Isolation and identification of Bifidobacterium spp. in commercial yogurts sold in Europe Iwana, H.;H. Masuda;T. Fujisawa;H. Suzuki;T. Mitsuoka
  17. J. Microbiol. Biotechnol. v.10 Comparative evaluation of probiotic activities of Bifidobacterium longum MK-G7 with commercial bifidobacteria strains Jung, H. K.;E. R. Kim;G. E. Ji;J. H. Park;S. K. Cha;S. L. Juhn
  18. Food Technol. v.53 Top product development trends in Europe Katz, F.
  19. Biotechnol. Bioeng. v.34 Alginate concentration: A key factor in growth of temperature-sensitive baculovirus-infected cells in microcapsules King, G.;A. Daugulis;M. Goosen;P. Faulkner;D. Bayly
  20. Biotechnol. Lett. v.19 Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti Krisch, J.;B. Szajani
  21. Milchwissenschaft. v.51 Survival of bifidobacteria during refrigerated storage in the presence of acid and hydrogen peroxide Lankaputhra, W. E. V.;N. P. Shah;L. B. Margaret
  22. Process. Biochem. v.30 Immobilization of Bacillus stearothermophilus cells by entrapment in various matrices Manolov, R. J.;M. S. Kambourova;E. I. Emanuilova
  23. Bifido. Microflora v.1 Recent trends in research on intestinal flora Mitsuoka, T.
  24. Crit. Rev. Food Sci. Nutr. v.38 Probiotic spectra of lactic acid bacteria (LAB) Naidu, A. S.;W. R. Bidlack;R. A. Clemens
  25. J. Microbiol. Biotechnol. v.9 Comparison of nitric oxide, hydrogen peroxide, and cytokine production in RAW 264.7 cells by Bifidobacterium and other intestinal bacteria Om, A. S.;S. Y. Park;I. K. Hwang;G. E. Ji
  26. Can. Inst. Food Sci. Technol. J. v.22 Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices Rao, A. V.;N. Shiwnarain;J. Maharaj
  27. Biotechnol. Prog. v.13 Production of small, monodispersed alginate beads for cell immobilization Seifert, D.;A. Phillips
  28. J. Dairy Sci. v.76 Improving survival of culture bacteria in frozen desserts by microentrapment Sheu, T. Y.;R. T. Marshall;H. Heymann
  29. J. Dairy Sci. v.75 Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species Shimamura, S.;F. Abe;N. Ishibashi;H. Miakawa
  30. Biotechnol. Bioeng. v.26 Diffusion characteristics of substrates in Ca-alginate gel beads Tanaka, H.;M. Matsumura;I. A. Veliky
  31. J. Microbiol. Biotechnol. v.9 Improvement of Bifidobacterium stability using cell-entrapment technique Woo, C. J.;K. Y. Lee;T. R. Heo