Physical Analysis of nahQ tnpA Genes from Pseudomonas fluorescens

  • Seol, Ja-Young (Department of Life Science, Sookmyung Womens University) ;
  • Chol, Soon-Young (Division of Molecular Bilogy, Ewha Womens Univesrity) ;
  • Min, Kyung-Hee (Department of Life Science, Sookmyung Womens University)
  • Published : 2001.12.01

Abstract

Pseudomonas fluorescens SM11 is a naphthalene-degrading strain whose dissimilatory genes are cho-mosomally encoded. We have cloned the 2.9 kb Sal I fragment harboring genes for the naphthalene-degrading upper pathway. The nucleotide sequences were determined to be nahQ, napA, and partial regions of nahE genes. The nahQ encods a protein of 188 amino acid residues with a deduced molec-ular wight of 20.8kDa. The high homology with other proteins suggests that NAhQ may be an active and useful protein whtich gives as selective advantage to naphthalene degradatin. Transposase(TnpA)encodes a polypetide chain with a molecular mass of 41.8kDa consisting of 376 amino acid residues. The deduced anino acid sequence of tnpA revealed 96% idenitity with putative transposase of P. stutzeri OX1,. It was assumed that transposase plays an important role in the evloution of the catabloic-path way in the regulation of nah expression.

Keywords

References

  1. Appl. Environ. Microbiol. v.64 Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1 Bertoni G.;M. Martino;E. Galli;P. Barbieri
  2. Science v.277 The complete genome sequence of Escherichia coli K-12 Blattner F.R.;G. Plunkett 3rd;C.A. Bloch;N.T. Perna;V. Burland;M. Riley;J. Collado-Vides;J.D. Glasner;C.K. Rode;G.F. Mayhew;J. Gergor;N.W. Davis;H.A. Kirkpatrick;M.A. Goeden;D.J. Rose;B. Mau;Y. Shao
  3. Gene v.236 Genetic characterization and evlutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10 Bosch R.;G.V. Elena;R.B.M. Edward
  4. J. Gen. Microbiol. v.132 A restriction map of naphthalene catabolic plasmid pWW60-1 and the location of some of its catabolic genes Cane P.A.;P.A. Williams
  5. Mol. Cells v.11 Molecular cloning of the nahG gene encoding salicylate hydroxylase from Pseudomonas fluorescens Chung Y.S.;N.R. Lee;C.I. Cheon;E.S. Song;M.S. Lee;Y.S. Kim;K.H. Min
  6. J. Bacteriol. v.175 Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway Denome S.A.;D.C. Stanley;E.S. Olson;K.D. Young
  7. J. Bacteriol. v.174 Cloning and sequencing of IS1086, an Alcaligenes eutrophus insertion element related to IS30 and IS4351 Dong Q.;A. Sadouk;D. Lelie;S. Taghavi;A. Ferhat;J.M. Nuyten;B. Borremans;M. Mergeay;A. Toussaint
  8. J. Bacteriol. v.176 Organization and evolution of naphthalene catabolic pathway: sequence of the DNA encoding 2-hydroxy-chromosome-2-carboxylate isomerase and trans-o-hydroxy-benzylidenepyruvate hydratase-aldolase from the NAH7 plasmid Eaton R.W.
  9. J. Mol.Evol. v.38 Coden usage patterns suggest independent evolution of two catabolic operons on toluene-degradative plasmid TOLpWW0 of Pseudomonas putida Harayama S.
  10. Mol. Gen. Genet. v.210 Evolutionary relationships between catabolic pathway for aromatics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWW0 and NAH7 plasmids Harayama S.;M. Rekik;A. Wasserfallen;A. Bairoch
  11. Microbiology v.141 The 4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase (acylating) encoded by the nahM and nahQ genes of the naphthalene catabolic plasmid pWW60-22 provide further evidence of consercation of meta-cleavage pathway gene sequences Platt A.;V. Shingler;S.C. Taylor;P.A. Williams
  12. Mol. Gen. Genet. v.262 The Corynebacterium glutamicum insertion sequence ISCg2 prefers conserved target sequence located adjacent to genes involved in aspartate and glutamate metabolism Quast K.;B. Bathe;A. Puhler;J. Kalinowski
  13. Molecular cloning: a laboratory manual Sambrook J.;E.F. Fiitsh;T. Maniatis
  14. J. Bacteriol. v.166 Indentification of the nahR gene product and nucleotide sequences required for its activation of the sal operon Schell M.A.;P.E. Wender
  15. CF600. J. Bacteriol. v.174 Nucleotide sequence and functional analysis of the complelte phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain Shingler V.;J. Powlowski;U. Marklund
  16. Gene v.127 Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB9816-4 Simon M.J.;T.D. Osslund;R. Saunders;B.D. Ensley;S. Suggs;A. Harcourt;W. Suen;D.L. Cruden;D.T. Gibson;G.J. Zylstra
  17. J. Bacteriol. v.176 Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol degydrogenase in Pseudomonas putida OUS82 Takizawa N.;N. Kaida;S. Torigoe;T. Moritani;T. Sawada;S. Satoh;H. Kiyohara
  18. Biodegradtion v.5 The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas Williams P.A.;J.R. Sayers
  19. Proc. Natl. Acad. Sci. v.79 Plasmid gene organization: naphthalene/salicylate oxidation Yen K.M.;I.C. Gunsalus
  20. Gene v.175 IS1394 from Pseudomonas alcaligenes NCIB9867: identification and characterization of a member of the IS30 family of insertion elements Yeo C.C.;C.L. Poh
  21. Gene v.258 Complete nucleotide sequence of the prophage VT1-Sakai carrying the Shiga toxin a genes of the enterohemorrhagic Escherichia coli O157:H7 strain derived from the Sakai outbreak Yokoyama K.;K. Makino;Y. Kubota;M. Watanabe;S. Kimura;C.H. Yutsudo;K. Kurokawa;K. Ishii;M. Hattori;I. Tatsuno;H. Abe;M. Yoh;T. Iida;M. Ohnishi;T. Hayashi;T. Yasunaga;T. Honda;C. Sasakawa;H. Shinagawa
  22. J. Bacteriol. v.183 Nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism Zhou N.Y.;S.L. Fuenmayor;P.A. Williams