Microbial Metal Transformations

  • Gadd, Geoffrey M. (Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life Sciences, University of Dundee)
  • Published : 2001.06.01

Abstract

There is considerable interest in how microbiological processes can affect the behaviour of metal contaminants in natural and engineered environments and their potential for bioremediation. The extent to which microorganisms can affect metal contaminants is dependent on the identity and chemical form of the metal and the physical and chemical nature of the contaminated site or substance. In general terms, microbial processes which solubilize metals increase their bioavailability and potential toxicity, whereas those that immobilize them reduce bioavailability. The balance between mobilization and immobilization varies depending on the metal, the organisms, their environment and physico-chemical conditions.

Keywords

References

  1. Biotechnol. Lett. v.22 Cadimium, lead and zinc removal by expression of the thiosulfate reductase gene from Salmonella typhimurium in Escherichia coli. Bang, S.W.;D.S. Clarke;J.D. Keasling
  2. Abstr. Pap. Am. Chem. v.203 Biological removal of Hg(II) from a contominated fresh-water pond Barkay, T.;R. Turner
  3. Metal lones and Bacteria Beveridge, T.J.;R.J. Doyle
  4. Experientia v.46 Complexing agents from microoorganisms Birch, L.;R. Bachofen
  5. Envrion. Technol. v.18 Simultaneous sewage sludge digestion and metal leaching at controlled PH. Blais, J.F.;N. Meunier;R.D. Tyagi
  6. Radiochim. Acta. v.74 Complexation study of NpO and UO ions with several organic ligands in aqueous solutions of high ionic strength Borkowski M.;S. Lis;G.R. Choppin
  7. FEMS. Microbiol. Rev. v.20 Bioleaching : metal solubilization by micro-organisms Bosecker, K.
  8. FEMS. Microbiol. Rev. v.11 Microbial retention of mercury from waste streams in a laboratory column containing mer a gene bacterial Brunke, M.;W.D. Decker;A. Frischmuth;J.M. Horn;H. Lunsdof;M. Rhode;M. Roheicht;K.N. Timmis;P.Weppen
  9. J. Biotechnol. v.27 Leaching of metal with fungi Burgstaller, W;F. Schinner
  10. Pollutions: Causes, Effects and Control. Chemical pollution of the aquatic enviroment by priority pollutants and its control Crathorne, B.;A.J. Dobbs:R.M. Harrison(ed.)
  11. Arch. Microbiol. v.160 The periplasmic nitrite reducatase of Thaueria selenatis may catalyze the reduction of selenite to elemental selenium. Demolldecker, H.;J.M. Macy
  12. Mol. Biotechnol. v.12 Heavey metals bioremediation of soil Diels L.;M. DeSmet, L.
  13. Colloids Surf. v.120 The role of organic acids in mineral weathering Drever, J.I.;L.L. Stillings.
  14. Trends. Biotechnol. v.17 Treatment of metal-contaminated waste:why select a biological process? Eccles, H.
  15. Adv. Inorg. Chem. v.36 The extraction of metals for ores using bacteria Ewart, D.K.;M.N. Hughes
  16. Nature v.356 Biodegradation of metal citrate complexes and implications for toxic metal algae Francis, A.J.;C.J. Dodge;J.B. Gillow
  17. Biotechnology v.6b Accumulation of metals by microorganisms and algae Gadd, G.M.;H-J. Rehm(ed.)
  18. FEMS. Microbiol. Rev. v.11 Microbial formation and transformation of organometallic and organometalloid compounds Gadd. G.M.
  19. Endeavour v.20 Influence of microorganisms on the environmental fate of radionuclides Gadd. G.M.
  20. Adv. Microb. Physiol. v.41 Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical process Gadd, G.M.
  21. Curr. Opin. Biotechnol. v.11 Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Gadd, G.M.
  22. The Encyclopedia of Microbiology(2nd ed.) Heavy metal pollutants : enviromental and biotechnological aspects Gadd, G.M.;J. Lederberg(ed.)
  23. Environmental Microbe-Metal Interactions Fungi transformations of metals and metalloids Gadd, G.M.;J.A. Sayer;D.R. Loveley(ed.)
  24. J. Chem. Technol. Biotechnol v.49 Biosorptions of radionuclides by yeast and fungal biomass Gadd, G.M.;C. White
  25. Trends. Biotechnol. v.11 Microbial treatment of metal pollution-a working biotechnology? Gadd. G.M.;C. White
  26. Mycol. Res. v.103 Trans-formation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization Gharieb, M.M.;M. Kierans;G.M. Gadd
  27. Mycol. Res. v.102 Solubilization of natural gypsum(CaSO · 2H₂O)and the formation of calucium oxalate vy Aspergillus niger and Serpula himantiodies Gharieb, M.M.;J.A. Sayer;G.M. Gadd
  28. Biochem. Soc. Trans. v.26 Fungi as potenial bioremediation agents in soil contaminated with heavy or radioactive metals. Gray S.N.
  29. Metal Irons Biological Systems Biological alkylation of selenium and tellurium Karlson, U.;W.T. Frankenberger;H. Sigel(ed.);A. Sigel(ed.)
  30. J. Biosci. Bioeng. v.89 Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1 Kashiwa, M.;S. Nishimoto;K. Takahashi;M. Ike;M. Fujita
  31. J. Indust. Mycrobiol. v.26 Surveyhresults on the environmental fate of uranium mining and milling wastes Landa, E.R.;J.R. Gray
  32. Appl. Environ. Microbiol. v.64 Enzymatic recovery of elemental palladium using sulfate-reducing bacteria Lloyd, J.R.;L.E. Macaskie
  33. J. Environ. Qual v.19 Selenium immobilization in a pond sediment at Kesterson Reservoir Long, R.H. B.;S.M. Benson;T.K. Tokunaga;A. Yee
  34. Curr. Opin. Biotechnol. v.8 Bioremediation of metal contamination Lovley, D.R.;J.D. Coates
  35. Arch. Microbiol. v.159 Gaobacter metallireducens gen. nov. sp. now., a microorganism capable of coupling the complete oxidation of orginc compounds to the reduction of iron and other metals Lovley, D.R.;S.J. Giovannony;D.C. White;J.E. Champine;E.J.P. Phillips;Y. Gorby;S. Goodwin
  36. Biological Waste Treatment Microbial metabolismm desolubilization and deposition of heavy metals : uptake by immobilized cells and application to the treatment of liquid wastes Macaskie, L.E.;A.C.R. Dean;A. Mizrahi(ed.)
  37. Crit. Rev. Biotechnol. v.11 The application of biotechnology to the treatment of waste produced by the nuclear fuel cycle-bio-degradation and bioaccumulation as a means of treating radionuclide-containing streams Macaskie, L.E.
  38. FEMS. Microbiol. Rev. v.61 The application of biotechnology to the treatment of waste produced by the nuclear fuel cycle-bio-degradation and bioaccumulation as a means of treating radionclide-containing streams Macy, J.M.;T.A. Michel;D.G. Kirsch
  39. Appl. Environ. Microbiol. v.55 Selenate reduction to elemental selenium by anaerobic bacteria in dediments and culture: biogeochemical significance of a novel sulfate independent respiration Oremland, R.S.;J.T. Hollibaugh;A.S. Maest;T.S. Presser;L.G. Miller;C.W. Culbertson
  40. Environ. Sci. Technol. v.24 Measurement of in situ rates of selenate removal ny dissimilatory bacterial reduction in sediments Oremland, R.S.;N.A. Steinberg;A.S. Maest;T.S. Presser;L.G. Miller;J.T. Hollibraugh
  41. Appl. Environ. Microbiol. v.57 In situ bacterial selemate reduction in the agricultural drainage systems of Western Nevada. Oremland, R.S.;N.A. Steinberg;T.S. Presser;L.G. Miller
  42. Appl. Environ. Microbiol. v.65 Simmultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria Oremland, R.S.;J. Switzer Blum;A. Burns Bindi;P.R. Dowdle;M. Herbel;J.F. Stolz
  43. J. Indust. Microbiol. v.14 Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction Phillips, E.J.P.;E.R. Landa;D.R. Lovely
  44. Biotechnol. v.13 Mining with microbes Rawlings, D.E.;S. Sliver
  45. Precambrian Res. v.61 Isolation and physiology of a manganese-reducing Bacillus polymyxa from an Oligocence silver-bearing ore and sediment with reference to Precambrain biogeochemistry Rusion, P.A.;J.E. Sharp;K.L. Oden;R.G. Arnold;N.A. Sinclair, N.A.
  46. Micol. Res. v.101 Sloubilization and trans formation of insoluble inorganic metal compounds to insolunble metal oxalates by Aspergillus niger Sayer, J.A.;G.M. Gadd
  47. Curr. Biol. v.9 Lead mineral treasformation by fungi Sayer, J.A.;J.D. Cotter-Howells;C. Watson;S. Hillier;G.M. Gadd
  48. Appl. Environ. Microbiol. v.66 A New Kelevsiella planticola strain(Cd ) grows anaerobivally at high cadmium condentrations and precipitates cadmium sulfide Sharma, P.K.;D.L. Balkwill;A. Frenkel;M.A. Vairavamurthy
  49. Gene v.179 Bacterial resistances to toxic metal ions: a review Silver, S.
  50. J. Indust. Microbiol. Biotechnol. v.20 Genes for all metals a bacterial view of the periodic table Silver, S.
  51. Appl. Environ. Microbiol. v.66 Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria Spear, J.R.;L.A. Figueroa;B.D. Honeyman
  52. Environ. Technol. v.15 Heavy metal leaching form sewage sludges:a techon-economic evaluation of the process options Sreekrishnan, T.R.;R.D. Tyagi
  53. FEMS. Microbiol. Rev. v.23 Baterial respiration of arsenic and selenium Stolz, J.F.;R.S. Oremland;F. Schinner
  54. J. Inst. Wat. Environ. Man. v.6 High yield production of oxalic acid for metal leaching purposes by Aspergillus niger Strasser, H.;W. Burgstaller;F. Schinner
  55. J. Inst. Wat. Environ. Man. v.6 Overview of cleanup methods ofr contaminated sites Taylor, M.R.G.;R.A. N. McLean
  56. Advnaces in Soil Science Bioremendation of soils contaminated with selenium Thompson-Eagle, E.T.;W.T. Frankenberger;R. Lai(ed.);B.A. Stewart(ed.)
  57. Lett. Appl. Microbiol. v.18 Mineral leaching of non sulphide nickel ores using heterotrophic microorganisms Tzeferis, P.G.;S. Agatzini;E.T. Nerantzis
  58. Environ. Sci. Technol. v.28 Chemical and biological leaching of aluminium form red mud Vachon, P.R.D.;Tyagi, J.C. Auclair;K.J. Wikinson
  59. Appl. Environ. Microbiol. v.66 Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface Wang, C.L.;P.D. Maratukulam;A.M. Lum;D.S. Clark;J.D. Keasling
  60. Microbiol. v.142 Mixed sulphate-reducing bacterial cultures for bioprcipitation of toxic metals:factorical and response- surface analysis of the effects of dilution rate,dulpahte and substrate concentration White, C.;G.M. Gadd
  61. J. Indust. Microbiol. v.17 A comparison of carbon/energy and complex nitrogen sources for vacterial sulphate-reduction: potential applicatins to bioprecipitation of toxic metals as sulphides White, C.;G.M. Gadd
  62. J. Indust. Microbiol. v.18 An intenal sedimentation bioreactor laboratory-scale removal of toxic metals from soil lieachates using biogenic sulphide precipitation White, C.;G.M. Gadd
  63. Extremophiles: Physiology and Biotechnology Reduction of metal cations and oxyanions by anaerobic and metal-resistant organisms: chemistry, physiology and potential for the control and bioremediation of toxic metal pollution White, C.;G.M. Gadd;W.D. Grant(ed.);T. Horikoshi(ed.)
  64. Microbiol. v.144 Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms White, C.;G.M. Gadd
  65. FEMS. Microbiol. Rev. v.183 Copper accumulation by sulphate-reducing bacterial biofilms and effects on growth White, C.;G.M. Gadd
  66. FEMS. Microbiol. Rev. v.20 Microbial solubilization and immobilization of toxic metals:key biogeochemical processees for treatment of contamination White, C.;J.A. Sayer;G.M. Gadd
  67. Nature Biotechnol. v.16 An integrated microbial process for the bioremediation of soil contaminated with toxic metals White, C.;A.K. Sharman;G.M. Gadd
  68. J. Chem. Technol. Biotechnol v.63 Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymically-mediated growth of polycrystalline NH₄UO₂PO₄ Yong, P.;L.E. Macaskie
  69. Environ. Technol. v.15 Adaptation of indigenous iron-oxidzing vacteria for bioleaching of heavy metals in contaminated soils Zagury, G.J.lK.S. Narasasiah;R.D. Tyagi