Influences of Seasonal Rainfall on Physical, Chemical and Biological Conditions Near the Intake Tower of Taechung Reservoir

대청호의 취수탑 주변의 이화학적${\cdot}$생물학적 상태에 대한 계절강우의 영향

  • Seo, Jin-Won (Environment Toxicology Team, Korea Research Institute of Chemical Technology) ;
  • Park, Seok-Soon (Dept. of Environmental Science, College of Engineering, Ewha Womans University) ;
  • An, Kwang-Guk (Dept. of Environmental Science, College of Engineering, Ewha Womans University)
  • 서진원 (한국화학연구원 환경독성연구팀) ;
  • 박석순 (이화여자대학교 공과대학 환경학과) ;
  • 안광국 (이화여자대학교 공과대학 환경학과)
  • Published : 2001.12.31

Abstract

Physical, chemical, and biological parameters were measured during the period from July 1993 to August 1994 near the Munui intake tower of Taechung Reservoir to evaluate effects of nutrients and suspended solids on algal chlorophyll-a and water clarity. Large amounts of precipitation during summer 1993 produced minimum conductivity ($88\;{\mu}S/cm$), minimum TN : TP (<40), and maximum total phosphorus (TP;$59\;{\mu}g/L$) and resulted in a chlorophyll-a peak ($79\;{\mu}g/L$) and minimum transparency (<1.5 m) among the seasons. At the same time, ratios of volatile suspended solids (VSS): non-volatile suspended solids (NVSS) were maximum (13.0),indicating that the reduced transparency was mainly attributed to biogenic turbidity in relation to phytoplankton growth. In contrast, severe drought in summer 1994 resulted in greater conductivity (>$120\;{\mu}S/cm$), water clarity (%gt;2 m), and lower TP and chlorophyll- a (<$10\;{\mu}g/L$) relative to those of summer 1993. Total phosphorus ($R^2=0.46$, n=59) accounted more variations of chlorophyll- a compared to total nitrogen ($R^2=0,29$, n=59). The mass ratios of TN : TP ranged from 39 to 222 and were strongly correlated with TP (r = -0.80) but not with concentrations of TN (r = 0.05). Ambient nutrient concentrations and TN : TP mass ratios indicated that seasonality of chlorophyll- a was likely determined by concentrations of phosphorus reflected by the distribution of rainfall. It was concluded that reductions of phosphorus during heavy rainfall may provide better water quality for the drinking water in the intake tower.

1993년 7월부터 1994년 8월까지 대청호 내 문의취수탑에서 조류의 엽록소 양 및 투명도에 대한 영양염류 및 현탁물의 영향을 평가하기 위해 물리적, 화학적, 생물학적 요소들이 측정되었다. 1993년 여름기간 동안 집중 강우는 수체의 회석효과(전기전도도=$88\;{\mu}S/cm$),최소의 총질소와 총인 질량 비 (<40),그리고 최대의 총인 농도($59\;{\mu}g/L$)를 야기시켰고, 계절들 가운데 최고점의 엽록소 ($79\;{\mu}g/L$)와 최소의 투명도(<1.5m)를 초래하였다. 이와 동시에 유기현탁물(VSS)과 무기현탁물(NVSS)질량비는 최대 (13.0)였으며, 이것은 감소된 투명도가 식물성 플랑크톤 성장과 연관된 생물학적인 혼탁도로부터 주로 기인되었다는 것을 제시하였다. 반면, 1994년 여름기간동안의 극심한 가뭄은 1993년 여름보다 높은 전기전도도(>$120\;{\mu}S/cm$)와 물의 투명도(>2m),그리고 낮은 총인과 엽록소(<$10\;{\mu}g/L$)를 초래하였다. 영양염류에 대한 엽록소의 회귀분석에 따르면, 엽록소의 변이는 총질소 ($R^2=0.29$)보다는 총인 ($R^2=0.46$)에 의해 설명되었다. 총질소와 총인의 질량비는 조사기간동안 $39{\sim}222$범위에 속하였으며, 총질소의 농도 보다는 총인의 농도에 의해 결정되었다. 조사기간동안 두 영양염류의 농도와 총질소 대 총인의 질량 비는 엽록소의 계절 주기성이 주로 강우의 분포에 반영된 인(Phosphorus)의 농도에 의해 결정된다는 것을 의미하였다. 집중강우 기간동안의 인유입의 저지는 취수탑에서 식수를 위한 보다 나은 수질을 제공할 것으로 사료된다.

Keywords

References

  1. Korean J. Limnol. v.33 Dynamic changes of dissolved oxygen during summer monsoon. An, K-G.
  2. Korean J. Limnol. v.33 An influence of point-source and flow events on inorganic nitrogen fractions in a large artificial reservoir. An, K-G.
  3. Hydrobiologia v.436 Temporal and spatial patterns in ionic scalinity and suspended solids in a reservoir inflenced by the Asian monsoon. An, K-G.;J.R. Jones.
  4. Standard methods for the examination of water and waste water. A.P.H.A.
  5. Intern. J. Envir. Studies v.21 Comparison of seasonal and diurnal patterns of some physico-chemical parameters of the open and closed parts of Loktak Lake, Manipur Banerjee, D.K.;B. Bhatia;I. Haq.
  6. Science v.196 Great Lakes eutrophication: the effect of point source control of phosphorus. Chapra, S.C.;A. Rovertson.
  7. Wat. Res. v.8 The N: P ratio and tests with Selenastrum to predict eutrophication in lakes. Chiaudani, G.;M. Vighi
  8. Prog. Wat. Tech. v.8 Nitrogen- a growth limiting nutrient in eutrophic lakes. Claesson, A.;S.O. Ryding.
  9. Limnol. Oceanogr. v.37 Nitrate and organic N analyses with second- derivative spectroscopy. Crumpton, W.G.;T.M. Isenhart;P.D. Mitchell
  10. Reservoir Limnology: An ecological continuum. Reservoir transport processes Ford, D.E.;K.W. Thronton(ed.)
  11. Arch. Hydrobiol. v.89 Eutrophication parameters and trophic state indices in 30 Swedish waste-receiving lakes. Forsberg, C.;S.O. Ryding
  12. Freshwat. Biol. v.18 Time series analysis of water quality data from Lake Ontario: implications for the measurement of water quality in large and small lakes. Harris, G.P.
  13. Can. J. Fish. Aquat. Sci. v.40 Factors affecting the relation between phosphorus and chlorophyll- a in midwestern reservoirs. Hoyer, M.V.;J.R. Jones.
  14. A treatise on limnology: I. geography, physics and chemistry Hutchinson, G.E.
  15. J. Wat. Poll. Control Fed. v.48 Prediction of phosphorus and chlorophyll levels in lakes Jones, J.R.;R.W. Bachmann.
  16. Lake and Reservoir Manag. v.6 Occurrence and prediction of algal blooms in Lake Taneycomo. Knowlton, M.F.;J.R. Jones
  17. Verh. Int. Ver. Limnol. v.23 Pre- and postmonsoon limnological characteristics of lakes in the Pokhara and Kathmandu Valleys Lohman, K.;J.R. Jones;M.F. Knowlton;D.B. Swar;M.A. Pamperl;B.J. Brazos.
  18. Limnol. Oceanogr. v.10 The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Menzel, D.W.;N. Corwin.
  19. Wat. Sci. Tech. v.28 Evaluation of nutrient-chlorophyll relationships in the Rybinsk Reservoir. Mineeva, N.M.
  20. Korean J. Limnol. v.28 Short-term prediction of the bluegreen algal bloom in Daechung Reservoir. Oh, H-M.;D-H. Kim.
  21. Can. J. Fish. Aquat. Sci. v.39 Improvements in qualifying the phosphorus concentration in lake water. Prepas, E.E.;F.A. Rigler
  22. Arch. Hydrobiol. v.94 Primary productivity and nutrient balance in a lower Colorado River reservior. Priscu, J.C.;J. Verduin;J.E. Deacon.
  23. Verh. Int. Ver. Limnol. v.4 The ionic composition of lake waters. Rodhe, W.
  24. Arch. Hydrobiol. v.62 Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Sakamoto, M.
  25. Hydrobiologia v.114 Extraction of chlorophyll-α from freshwater phytoplankton for spectrophotometric analysis. Sartory, D.P.;J.U. Grobbelaar.
  26. J. Fish. Res. Bd. Can. v.28 Eutrophication of Lake 227, Experimental Lakes Area, northwestern Ontario, by addition of phosphate and nitrate. Schindler, D.W.;F.A.J. Armstrong;S.K. Homgren;G.J. Brunskill.
  27. J. Fish. Res. Bd. Can. v.31 Experimental lakes area: whole-lake experiments in eutrophication. Schindler, D.W.;E.J. Fee.
  28. Trop. Ecol. v.22 Physico-chemical characteristics and macrophytes of Naukuchiya Tal, a mid altitude lake of Kumaun Himalaya (India.) Singh, R.K.
  29. Int. Revue ges. Hydrobiol. v.70 Limnological observations on Rihand Reservoir (Uttar Pradesh) with reference to the physical and chemical parameters of its water. Singh, R.K.
  30. Reservoir Limnology: An ecological continuum. Thornton, K.W.
  31. American Fisheries Society Monograph v.7 Sediment in streams: sources, biological effects and controls Waters, T.F.
  32. Limnology: lake and river ecosystems Wetzel, R.G.