DOI QR코드

DOI QR Code

Development of Trimming Technology in High-fine Resistor Using U.V. Laser

자외선 레이저를 이용한 고정밀 저항체 가공기술 개발

  • Noh, S.S. (Technical Research Institute, Daeyang Electric Co., LTD) ;
  • Kim, D.H. (Technical Research Institute, Daeyang Electric Co., LTD) ;
  • Chung, G.S. (Division of Electronics & Mechanical Engineering, Dongseo University) ;
  • Kim, H.P. (Division of Electronics and Electrical Engineering, Sangju National University) ;
  • Kim, K.H. (Department of Inorganic material Engineering, Pusan National University)
  • 노상수 (대양전기공업(주) 부설기술연구소) ;
  • 김동현 (대양전기공업(주) 부설기술연구소) ;
  • 정귀상 (동서대학교) ;
  • 김형표 (상주대학교 전자전기공학과) ;
  • 김광호 (부산대학교 무기재료공학과)
  • Published : 2002.11.30

Abstract

In this paper, we used U.V.(wavelength, 355nm) laser for adjusting Pt thin films temperature sensor to $100{\Omega}$ at $0^{\circ}C$. Internationally, A-class tolerance of temperature sensor is $0.06{\Omega}$ at $0^{\circ}C$. This is under value of $0.15^{\circ}C$, actually, so high-fine trimming technology is essential to this process. The width of trimmed lines was about $10{\mu}m$ and the best trimming of Pt thin films of $1{\sim}1.5{\mu}m$ was carried out with power : 35mW, rep. rate frequency : 200Hz and bite size : $1.5{\mu}m$. And using photolithography process, 96 resistors were fabricated in $2"{\times}2"$ substrate as the proportion of $79{\sim}90{\Omega}$ and $91{\sim}102{\Omega}$ is 42.7% and 57.3%, respectively. As result of trimming resistors to the target value of $109.73{\Omega}$ at $25^{\circ}C$, 82.3% of resistors had the tolerance within ${\pm}0.30{\Omega}$ and the others(17.7%) were within ${\pm}0.06{\Omega}$ of A-class tolerance.

본 논문에서는 백금박막 온도센서의 $0^{\circ}C$, $100{\Omega}$ 세팅을 위해 355nm 파장을 갖는 자외선 레이저를 이용하였다. 국제적으로 온도센서의 A-class 기준오차는 $0^{\circ}C$에서 ${\pm}0.060{\Omega}$이다. 실제적으로 이 값은 $0.15^{\circ}C$이하에 해당하는 오차로 저항체 제작시 고정밀 가공 기술을 필요로 한다. 가공에 이용된 355nm DYP(Diode-Pumped YAG) 레이저는 power : 37mW, rep rate 주파수 : 200Hz 그리고 bite size : $7.5{\mu}m$에서 $1{\sim}1.5{\mu}m$ 두께의 백금박막을 가장 안전하게 가공할 수 있었으며, 가공선폭은 $10{\mu}m$ 안팎임을 확인하였다. 그리고 사진식각 공정기술을 이용하여 제작된 $2"{\times}2"$ 기판내의 96개(4 by 24) 저항체는 상온 $25^{\circ}C$에서 $79{\sim}90{\Omega}$ : 42.7%, $91{\sim}102{\Omega}$ : 57.3%의 비율로 각각 제작되어졌다. $109.73{\Omega}$를 목표 값으로 $25^{\circ}C$에서 자외선 레이저를 이용하여 가공한 결과, 82.3%가 가공오차가 ${\pm}0.03{\Omega}$이하에 들어왔으며 나머지 17.7%도 국제규격 A-Class내인 ${\pm}0.06{\Omega}$내에 포함되었다.

Keywords

References

  1. Appl. Phys. Lett. v.74 no.14 Laser technologies for manufacturing of advanced materials and devices J. J. Dubowski https://doi.org/10.1063/1.123737
  2. Laser Beam Shaping, Proceedings of SPIE v.4095 Laser Micromachining In Microelectronics Industry Edward J. Swenson https://doi.org/10.1117/12.405254
  3. COMSATS v.2 no.4 Thick film Technology and its application in Tele-communication System M. Aslam;J. A. Mirza
  4. J. Appl. Phys. v.36 no.part 1 Microstructure and Temperature Coefficient of Resistance of Platinum Films Jialiang ZHANG https://doi.org/10.1143/JJAP.36.834
  5. First Int. Symp. on Laser PM. Proceedings SPIE v.4088 Laser-induced micro-structuring of photonic material : Semi-conductors Jan J.
  6. Electrochemical society Proceeding v.99-29 Reliability Characterization of RuO₂ Thin Film Resistors L. F. Garfias
  7. Proceeding of SPIE v.4274 no.4274 "A novel laser trimming technique for microelectronics" , Laser applications in Microelectronic and Optoelectronic Manufacturing Ⅳ M. Meunier https://doi.org/10.1117/12.432531