DOI QR코드

DOI QR Code

The Reaction of Heterocyclic Nucleophiles and the DABCO Salts of the Baylis-Hillman Acetates


Abstract

Keywords

References

  1. Im, Y. J.; Kim, J. M; Mun, J. H.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 349.
  2. Chung, Y. M; Gong, J. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023. https://doi.org/10.1016/S0040-4039(01)01971-2
  3. Kim, J. N.; Lee, H. J.; Lee, K. Y; Gong, J. H. Synlett 2002, 173.
  4. Basavaiah, D.; Kumaragurubaran, N. Tetrahedron Lett. 2001, 42, 477. https://doi.org/10.1016/S0040-4039(00)01967-5
  5. Basavaiah, D.; Kumaragurubaran, N.; Sharada, D. S. Tetrahedron Lett. 2001, 42, 85. https://doi.org/10.1016/S0040-4039(00)01886-4
  6. Drewes, S. E.; Horn, M. M; Ramesar, N. Synth. Commun. 2000, 30, 1045. https://doi.org/10.1080/00397910008087122

Cited by

  1. Phosphine-Catalyzed Regiospecific Allylic Amination and Dynamic Kinetic Resolution of Morita−Baylis−Hillman Acetates vol.6, pp.8, 2004, https://doi.org/10.1021/ol049600j
  2. ChemInform Abstract: The Reaction of Heterocyclic Nucleophiles and the DABCO Salts of the Baylis-Hillman Acetates. vol.33, pp.45, 2010, https://doi.org/10.1002/chin.200245041
  3. )-ones with Morita–Baylis–Hillman Carbonates vol.76, pp.14, 2011, https://doi.org/10.1021/jo200557b
  4. Cinchona Alkaloid Catalyzed Regio- and Enantioselective Allylic Amination of Morita-Baylis-Hillman Carbonates with Isatins vol.2012, pp.19, 2012, https://doi.org/10.1002/ejoc.201200376
  5. Palladium-Catalyzed, Chelation-Assisted Stereo- and Regioselective Synthesis of Tetrasubstituted Olefins by Oxidative Heck Arylation vol.354, pp.13, 2012, https://doi.org/10.1002/adsc.201200306
  6. Synthesis of Poly-Substituted Benzene Derivatives via [3+3] Annulation Protocol from Morita-Baylis-Hillman Adducts and Glutaconates vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3503
  7. Synthesis of new N-heteroaryl derivatives of 4-pyrones from kojic acid based Baylis–Hillman acetates vol.48, pp.11, 2013, https://doi.org/10.1007/s10593-013-1188-2
  8. An asymmetric allylic alkylation reaction of 3-alkylidene oxindoles vol.51, pp.76, 2015, https://doi.org/10.1039/C5CC06182B
  9. One-pot synthesis of allyl thioacetate from benzaldehydes and activated alkenes using the Morita–Baylis–Hillman reaction as a key step vol.37, pp.2, 2016, https://doi.org/10.1080/17415993.2015.1124275
  10. Regio- and Stereoselective Construction of γ-Butenolides through Phosphine-Catalyzed Substitution of Morita-Baylis-Hillman Acetates: An Organocatalytic Allylic Alkylation vol.116, pp.48, 2004, https://doi.org/10.1002/ange.200461381
  11. Construction of Adjacent Quaternary and Tertiary Stereocentersvia an Organocatalytic Allylic Alkylation of Morita–Baylis–Hillman Carbonates vol.349, pp.3, 2007, https://doi.org/10.1002/adsc.200600467
  12. Organocatalytic asymmetric allylic alkylation of oxindoles with Morita–Baylis–Hillman carbonates pp.26, 2009, https://doi.org/10.1039/b905177e
  13. Organocatalytic peroxy-asymmetric allylic alkylation vol.7, pp.18, 2009, https://doi.org/10.1039/b912110b
  14. Dual Organocatalysis: Asymmetric Allylic-Allylic Alkylation of α,α-Dicyanoalkenes and Morita-Baylis-Hillman Carbonates vol.15, pp.7, 2009, https://doi.org/10.1002/chem.200802534
  15. Regio- and Stereoselective Construction of γ-Butenolides through Phosphine-Catalyzed Substitution of Morita–Baylis–Hillman Acetates: An Organocatalytic Allylic Alkylation vol.43, pp.48, 2002, https://doi.org/10.1002/anie.200461381
  16. Phosphine-Catalyzed Allylic Substitution of Morita−Baylis−Hillman Acetates: Synthesis of N-Protected &bgr;-Aminophosphonic Acid Esters vol.71, pp.20, 2002, https://doi.org/10.1021/jo061218s
  17. Synthesis of α-Methylene-β-Pyrrole Esters via Organocatalytic Regioselective Allylic Substitutions of Morita-Baylis-Hillman Acetates vol.29, pp.9, 2002, https://doi.org/10.5012/bkcs.2008.29.9.1835
  18. Phosphine-catalyzed [3+3] annulation reaction of modified tert-butyl allylic carbonates and substituted alkylidenemalononitriles vol.50, pp.31, 2002, https://doi.org/10.1016/j.tetlet.2009.05.085
  19. SN2’ versus SN2 Reactivity: Control of Regioselectivity in Conversions of Baylis–Hillman Adducts vol.16, pp.4, 2010, https://doi.org/10.1002/chem.200902487
  20. Amine-catalyzed (3+n) annulations of 2-(acetoxymethyl)buta-2,3-dienoates with 1,n-bisnucleophiles (n = 3–5) vol.46, pp.41, 2002, https://doi.org/10.1039/c0cc01966f
  21. One-Pot Synthesis of 5-Hydroxypyrrolin-2-one Derivatives from Modified Morita-Baylis-Hillman Adducts via a Consecutive CuI-Mediated Aerobic Oxidation, Allylic Iodination, Hydration of Nitrile, and Lac vol.33, pp.6, 2002, https://doi.org/10.5012/bkcs.2012.33.6.2079
  22. An Efficient Synthesis of Phospha-Morita-Baylis-Hillman Adducts via Michaelis-Arbuzov Reaction of the DABCO Salt of Morita-Baylis-Hillman Bromide vol.34, pp.1, 2002, https://doi.org/10.5012/bkcs.2013.34.1.133
  23. An Efficient Synthesis of Poly-Substituted Phenols and Pyridines from Morita-Baylis-Hillman Acetates and Diethyl Oxalacetate vol.34, pp.10, 2013, https://doi.org/10.5012/bkcs.2013.34.10.3027
  24. On the tandem Morita-Baylis-Hillman/transesterification processes. Mechanistic insights for the role of protic solvents vol.1154, pp.None, 2018, https://doi.org/10.1016/j.molstruc.2017.10.039