DOI QR코드

DOI QR Code

Synthesis of Ethyl 2-Methylene-3-aryl-4-oxoalkanoates and Ethyl 2-Arylidene-4-oxoalkanoates from the Baylis-Hillman Acetates


Abstract

Keywords

References

  1. Chung, Y. M.; Gong, J. H.; Kim, T. H.; Kim, J. N. TetrahedronLett. 2001, 42, 9023. https://doi.org/10.1016/S0040-4039(01)01971-2
  2. Im, Y. J.; Kim, J. M.; Mun, J. H.; Kim, J.N. Bull. Korean Chem. Soc. 2001, 22, 349.
  3. Kim, J. N.; Lee, H.J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173.
  4. Chamakh, A.; Mhirsi, M.; Villieras, J.; Lebreton, J.; Amri, H.Synthesis 2000, 295.
  5. Hbaieb, S.; Amri, H. J. Soc. Chim. Tunis.2000, 4, 671.
  6. Cookson, R. C.; Ray, P. S.Tetrahedron Lett. 1982, 23, 3521. https://doi.org/10.1016/S0040-4039(00)87658-3
  7. Das, N. B.; Sarma, J. C.;Sharma, R. P.; Bordoloi, M. Tetrahedron Lett. 1993, 34, 869. https://doi.org/10.1016/0040-4039(93)89035-O
  8. Aizpurua, J. M.; Palomo, O. C. Tetrahedron Lett. 1987, 28, 5361. https://doi.org/10.1016/S0040-4039(00)96730-3
  9. Shechter, H.; Williams, F. T. J. Org. Chem. 1962, 27, 3699. https://doi.org/10.1021/jo01057a517
  10. Mcmurry, J. E.; Melton, J.; Padgett, H. J. Org. Chem. 1974, 39,259. https://doi.org/10.1021/jo00916a037

Cited by

  1. Expedient Synthesis of 2‐Carboethoxy‐4‐methylnaphthalenes vol.36, pp.1, 2006, https://doi.org/10.1080/00397910500328605
  2. Highly Enantioselective and Regioselective Substitution of Morita–Baylis–Hillman Carbonates with Nitroalkanes vol.13, pp.22, 2011, https://doi.org/10.1021/ol202555v
  3. Asymmetric Allylic Alkylation of Isatin-Derived Morita–Baylis–Hillman Carbonates with Nitroalkanes vol.14, pp.15, 2012, https://doi.org/10.1021/ol301962e
  4. Enantioselective desymmetrization of prochiral 1,3-dinitropropanes via organocatalytic allylic alkylation vol.50, pp.1, 2014, https://doi.org/10.1039/C3CC47645F
  5. 2′-Intramolecular Oxidative Nucleophilic Substitution of Hydrogen-E2 Elimination vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10774
  6. Nitroalkanes as new, ideal precursors for the synthesis of benzene derivatives pp.26, 2008, https://doi.org/10.1039/b800941d
  7. Facile Synthesis of Baylis-Hillman Adducts Bearing the Carbamate or Amide Functional Group at the Secondary Position vol.25, pp.12, 2002, https://doi.org/10.5012/bkcs.2004.25.12.1966
  8. Synthesis of Methyl (E)-2-Cyanomethylcinnamates Derived from Baylis-Hillman Acetates and Conversion into Several 4-Hydroxy-2-naphthoic Acids and Benzylidenesuccinimides vol.26, pp.4, 2002, https://doi.org/10.5012/bkcs.2005.26.4.655
  9. Synthesis of 2-Benzylidene-7a-alkyltetrahydropyrrolizine-3,5-diones Starting from Baylis-Hillman Adducts vol.27, pp.7, 2002, https://doi.org/10.5012/bkcs.2006.27.7.1063
  10. Regioselective construction of polysubstituted phenols from Baylis–Hillman adducts via formal [4+2] annulation strategy vol.47, pp.32, 2006, https://doi.org/10.1016/j.tetlet.2006.06.031
  11. Synthesis of β,γ-Disubstituted α-Methylene-γ-butyrolactams Starting from the Baylis-Hillman Adducts vol.28, pp.1, 2007, https://doi.org/10.5012/bkcs.2007.28.1.143
  12. The Baylis-Hillman acetates in organic synthesis: Unprecedented sodium nitrite induced intramolecular Friedel-Crafts cyclization of secondary nitro compounds vol.4, pp.46, 2002, https://doi.org/10.1039/c4ra03573a