DOI QR코드

DOI QR Code

Substituent Effect on Fluorescence and Photoisomerization of 1-(9-Anthryl)-2-(4-Pyridyl)ethenes


Abstract

The fluorescence and photoisomerization quantum yields of trans-1-(9-anthryl)-2-(4-pyridyl)ethene (t-4-APyE), 1-(10-methyl-9-anthryl)-2-(4-pyridyl)ethene (t-4-MeAPyE), and 1-(10-chloro-9-anthryl)-2-(4- pyridyl)ethene (t-4-ClAPyE) were measured in cyclohexane, acetonitrile, and methanol at room temperature.Polar solvents result in the drastic reduction of fluorescence quantum yield and increase of photoisomerization quantum yield for all three compounds. These results are probably due to the stabilization of intramolecular charge transfer (ICT) excited state in polar solvent. The higher contribution of ICT in the presence of more electron-donating methyl substituent, manifested by largest positive fluorescence solvatochromism, indicates that the pyridine ring acts as an electron acceptor. Protonation or methylation makes pyridine ring stronger electron acceptor and causes long-wavelength ground state charge transfer absorption band and complete quenching of fluorescence. The fluorescence from t-4-APyE derivatives can be switched off responding external stimuli viz. medium polarity, protonation, or methylation.

Keywords

References

  1. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives; VCH: Weinheim, 1995.
  2. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P. ; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515. https://doi.org/10.1021/cr960386p
  3. de Silva, A. P.; Dixon, I. M.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Maxwell, P. R. S.; Rice, T. E. J. Am. Chem. Soc. 1999, 121, 1393. https://doi.org/10.1021/ja982909b
  4. Sun, S.-S.; Robson, E.; Dunwoody, N.; Silva, A. S.; Brinn, I. M.; Lees, A. J. Chem. Comm. 2000, 3, 201.
  5. Balzani, V.; Gomes-Lopez, M.; Stoddart, J. F. Acc. Chem. Res. 1998, 31, 405. https://doi.org/10.1021/ar970340y
  6. Chambron, J.-C.; Sauvage, J.-P. Chem. Eur. J. 1998, 4, 1362. https://doi.org/10.1002/(SICI)1521-3765(19980807)4:8<1362::AID-CHEM1362>3.0.CO;2-4
  7. Saltiel, J.; Charlton, J. L. In Rearrangements in Ground and Excited States; de Mayo, P., Ed.; Academic Press: New York, 1980.
  8. Waldeck, D. H. Chem. Rev. 1991, 91, 415. https://doi.org/10.1021/cr00003a007
  9. Meier, H. Angew. Chem. Int. Ed. Engl. 1992, 31, 1399. https://doi.org/10.1002/anie.199213993
  10. Irie, M. Chem. Rev. 2000, 100, 1685. https://doi.org/10.1021/cr980069d
  11. Arai, T.; Tokumaru, K. Adv. Photochem. 1995, 20, 1.
  12. Gorner, H.; Kuhn, H. Adv. Photochem. 1995, 19, 1.
  13. Aloisi, G. G.; Elisei, F.; Latterini, L.; Mazzucato, U.; Rodgers, M. A. J. J. Am. Chem. Soc. 1996, 118, 10879. https://doi.org/10.1021/ja961859c
  14. Grabowski, Z. R. Pure Appl. Chem. 1993, 65, 1751. https://doi.org/10.1351/pac199365081751
  15. Hashimoto, M.; Hamaguchi, H. J. Phys. Chem. 1995, 99, 7875. https://doi.org/10.1021/j100020a008
  16. Scherer, T.; van Stokkum, I. H. M.; Brouwer, A. M.; Verhoeven, J. W. J. Phys. Chem. 1994, 98, 10539. https://doi.org/10.1021/j100092a025
  17. Rettig, W. Appl. Phys. B 1988, 45, 145. https://doi.org/10.1007/BF00695283
  18. Kalynasundaram, K. Photochemistry in Microheterogeneous Systems; Academic Press: Orlando, 1987.
  19. Bhattacharyya, K.; Chowdhurry, M. Chem. Rev. 1993, 93, 507. https://doi.org/10.1021/cr00017a022
  20. Soujanya, T.; Fessenden, R. W.; Samanta, A. J. Phys. Chem. 1996, 100, 3507. https://doi.org/10.1021/jp9526509
  21. Rotkiewicz, K.; Grellmann, K. H.; Grabowski, Z. R. Chem. Phys. Lett. 1973, 19, 315. https://doi.org/10.1016/0009-2614(73)80367-7
  22. Wang, S.-L.; Ho, T.-I. J. Photochem. Photobiol. A 2000, 135, 119. https://doi.org/10.1016/S1010-6030(00)00289-6
  23. Shin, E. J.; Bae, E. Y.; Kim, S. H.; Kang, H. K.; Shim, S. C. J. Photochem. Photobiol. A 1997, 107, 137. https://doi.org/10.1016/S1010-6030(97)00067-1
  24. Shin, E. J.; Choi, S. W. J. Photochem. Photobiol. A 1998, 114, 23. https://doi.org/10.1016/S1010-6030(98)00197-X
  25. Shin, E. J. Bull. Korean Chem. Soc. 1999, 20, 1263.
  26. Calvert, J. G.; Pitts, Jr., J. N. Photochemistry; Wiley: New York, 1966.
  27. Rettig, W. Angew. Chem. Int. Ed. Engl. 1986, 25, 971. https://doi.org/10.1002/anie.198609711
  28. Cao, X.; Tolbert, R. W.; McHale, J. L.; Edwards, W. D. J. Phys. Chem. A 1998, 102, 2739. https://doi.org/10.1021/jp972190e

Cited by

  1. Reversible mechanofluorochromism of aniline-terminated phenylene ethynylenes vol.9, pp.24, 2018, https://doi.org/10.1039/C8SC00980E
  2. Excited State Behavior of 1-(9-Anthryl)-2-(2-thienyl)ethene vol.23, pp.11, 2002, https://doi.org/10.5012/bkcs.2002.23.11.1685
  3. Substituent Effect in Photochemistry of Carbonyl Compounds: α-Halovalerophenones vol.25, pp.1, 2004, https://doi.org/10.5012/bkcs.2004.25.1.042
  4. Photochemistry of Anthrylethene Derivatives Containing Heteroaromatic Ring : Pyrrole and Indole Derivatives vol.25, pp.6, 2002, https://doi.org/10.5012/bkcs.2004.25.6.907
  5. Hydrophobic Aminostyryl Quinolinium Dyes as New Fluorescent Stains for Proteins in Sodium Dodecyl Sulfate-polyacrylamide Gel vol.25, pp.3, 2002, https://doi.org/10.5012/bkcs.2004.25.3.345
  6. Solvatochromic Fluorescence Behavior of 8-Aminoquinoline-Benzothiazole: A Sensitive Probe for Water Composition in Binary Aqueous Solutions vol.26, pp.1, 2005, https://doi.org/10.5012/bkcs.2005.26.1.047
  7. Effect of N-methylation on both ground and excited states properties of 1-(9-anthryl)-2-(2-benzothiazolyl) ethene vol.919, pp.1, 2002, https://doi.org/10.1016/j.molstruc.2008.08.006
  8. Evaluation of molecular assembly, spectroscopic interpretation, intra-/inter molecular hydrogen bonding and chemical reactivity of two pyrrole precursors vol.1075, pp.None, 2002, https://doi.org/10.1016/j.molstruc.2014.07.012
  9. Positional Variation of Monopyridyl-N in Unsymmetrical Anthracenyl π-Conjugates: Difference between Solution- and Aggregate-State Emission Behavior vol.4, pp.3, 2019, https://doi.org/10.1021/acsomega.9b00046
  10. Unraveling relation between nonlinear absorption and structure of push pull ornamented anthracenyl chalcone derivatives vol.1219, pp.None, 2002, https://doi.org/10.1016/j.molstruc.2020.128578
  11. Porphyrin Photoabsorption and Fluorescence Variation with Adsorptive Loading on Gold Nanoparticles vol.9, pp.None, 2002, https://doi.org/10.3389/fchem.2021.777041