DOI QR코드

DOI QR Code

Determination of Volatile Organic Compounds (VOCs) Using Tedlar Bag/Solid-phase Microextraction/Gas Chromatography/Mass Spectrometry (SPME/GC/MS) in Ambient and Workplace Air


Abstract

SPME techniques have proven to be very useful tools in the analysis of wide VOCs in the air. In this study, we estimated VOCs in ambient and workplace air using a Tedlar ba /SPME/GC/MS system. The calibration curve was set to be linear over the range of 1-30 ppbv. The detection limits ranged from 10 pptv to 0.93 ppbv for all VOCs. Reproducibility of TO-14 target gas mixtures by SPME/GC/MS averaged at 8.8 R.S.D (%). Air toxic VOCs (hazardous air pollutants, HAPs) containing a total of forty halohydrocarbons, aromatics, and haloaro-matic carbons could be analyzed with significant accuracy, detection limit and linearity at low ppbv level. Only reactive VOCs with low molecular weight, such as chloromethane, vinylchloride, ethylchloride and 1,2-dichloro-ethane, yielded relatively poor results using this technique. In ambient air samples, ten VOCs were identified and quantified after external calibration. VOC concentration in ambient and workplace air ranged from 0.04 to 1.85 ppbv. The overall process was successfully applied to identify and quantify VOCs in ambient/workplace air.

Keywords

References

  1. Dettmer, K.; Knobloch, T.; Engewald, W. F. J. Anal. Chem. 2000,366, 70. https://doi.org/10.1007/s002160050014
  2. MacKensie, A. R.; Harrison, R. M.; Colbeck, I.; Hewitt, C. N.Atmos. Environ. 1991, 25A, 351.
  3. Holcomb, L. C.; Seabrook, B. S. Indoor Environ. 1995, 4, 7. https://doi.org/10.1177/1420326X9500400103
  4. Mukund, R.; Kelly, T. J.; Gordon, S. M.; Hays, M. J.; McClenny,W. A. Environ. Sci. Technol. 1995, 29, 183A. https://doi.org/10.1021/es00004a002
  5. Elke, K.; Jermann, E.; Begerow, J.; Dunemann, L. J. Chromatogr.A 1998, 826, 191. https://doi.org/10.1016/S0021-9673(98)00736-5
  6. Troost, J. R. Anal. Chem. 1999, 71, 1474. https://doi.org/10.1021/ac981316g
  7. Oliver, K. D.; Pleil, J. D.; McClenny, W. A. Atmos. Environ. 1986,20, 1403. https://doi.org/10.1016/0004-6981(86)90011-9
  8. Gholson, A. R.; Jayanty, R. K. M.; Storm, J. F. Anal. Chem. 1990,62, 1899. https://doi.org/10.1021/ac00216a032
  9. Kelly, T. J.; Holdren, M. W. Atmos. Environ. 1995, 29, 2595. https://doi.org/10.1016/1352-2310(95)00192-2
  10. Cao, X. L.; Hewitt, C. N. J. Chromatogr. A 1994, 688, 368. https://doi.org/10.1016/0021-9673(94)00908-2
  11. Dewulf, J.; Langenhove, H. V. Atmos. Environ. 1997, 31, 3291. https://doi.org/10.1016/S1352-2310(97)00148-9
  12. Kim, Y. M.; Harrad, S.; Harrison, R. M. Environ. Sci. Technol. 1999,33, 4342. https://doi.org/10.1021/es9902367
  13. Kuo, H. W.; Wei, H. C.; Liu, C. S.; Lo, Y. Y.; Wang, W. C.; Lai, J.S.; Chan, C. C. Atmos. Environ. 2000, 34, 3331. https://doi.org/10.1016/S1352-2310(99)00396-9
  14. Williams, R. L.; Lipari, F.; Potter, R. A. J. Air Waste Manage.Assoc. 1990, 40, 747. https://doi.org/10.1080/10473289.1990.10466720
  15. Pau, J. C.; Knoll, J. E.; Midgett, M. R. J. Air Waste Manage.Assoc. 1991, 41, 1095. https://doi.org/10.1080/10473289.1991.10466905
  16. Wang, Y.; Raihala, T. S.; Jackman, A. P.; John, R. St. Environ. Sci.Technol. 1996, 30, 3115. https://doi.org/10.1021/es950582y
  17. Matisova, E.; Skrabakova, S. J. Chromatogr. A 1995, 707, 145. https://doi.org/10.1016/0021-9673(95)00347-P
  18. Wang, J. L.; Chen, S. W.; Chew, C. J. Chromatogr. A 1999, 863,183. https://doi.org/10.1016/S0021-9673(99)00965-6
  19. Arthur, C. L.; Pawliszyn, J. Anal. Chem. 1990, 62, 2145. https://doi.org/10.1021/ac00218a019
  20. Zhang, Z.; Yang, M. J.; Pawliszyn, J. Anal. Chem. 1994, 66, 844. https://doi.org/10.1021/ac00089a001
  21. Gorlo, D.; Wolska, L.; Zygmunt, B.; Namiesnik, J. Talanta 1997,44, 1543. https://doi.org/10.1016/S0039-9140(96)02176-5
  22. Eriksson, M.; Swartling, A.; Dalhammar, G. Appl. Microbiol.Biotechnol. 1998, 50, 129. https://doi.org/10.1007/s002530051267
  23. Zhang, Z.; Pawliszyn, J. J. High. Resolut. Chromatogr. 1993, 16,689. https://doi.org/10.1002/jhrc.1240161203
  24. Gorecki, T.; Pawliszyn, J. Anal. Chem. 1995, 67, 3265. https://doi.org/10.1021/ac00114a025
  25. Llompart, M.; Li, K.; Fingas, M. J. Chromatogr. A 1998, 824, 53. https://doi.org/10.1016/S0021-9673(98)00613-X
  26. Lord, H.; Pawliszyn, J. J. Chromatogr. A 2000, 885, 153. https://doi.org/10.1016/S0021-9673(00)00535-5
  27. Llompart, M.; Li, K.; Fingas, M. Anal. Chem. 1998, 70, 2510. https://doi.org/10.1021/ac971332y
  28. Pawliszyn, J. Solid Phase Microextraction; Wiley-VCH: New York,1997.
  29. Potter, D. W.; Pawliszyn, J. Environ. Sci. Technol. 1994, 28, 298. https://doi.org/10.1021/es00051a017
  30. Chai, M.; Arthur, C. L.; Pawliszyn, J. Analyst 1993, 118, 1501. https://doi.org/10.1039/an9931801501
  31. Buchholz, K. D.; Pawliszyn, J. Anal. Chem. 1994, 66, 160. https://doi.org/10.1021/ac00073a027
  32. Buchholz, K. D.; Pawliszyn, J. Environ. Sci. Technol. 1993, 27,2844. https://doi.org/10.1021/es00049a026
  33. Bartak, P.; Cap, L. J. Chromatogr. A 1997, 767, 171. https://doi.org/10.1016/S0021-9673(96)01090-4
  34. Young, R.; Lopez-Avila, V. J. High Resolut. Chromatogr. 1996,19, 247. https://doi.org/10.1002/jhrc.1240190503
  35. Dugay, J.; Miege, C.; Hennion, M. C. J. Chromatogr. A 1998, 795,27. https://doi.org/10.1016/S0021-9673(97)01036-4
  36. Volmer, D. A.; Hui, J. P. M. Arch. Environ. Contam. Toxicol.1998, 35, 1. https://doi.org/10.1007/s002449900340
  37. Moder, M.; Popp, P.; Eisert, R.; Pawlizyn, J. F. J. Anal. Chem.1999, 363, 680. https://doi.org/10.1007/s002160051271
  38. Hwang, B.; Lee, M. J. Chromatogr. A 2000, 898, 245. https://doi.org/10.1016/S0021-9673(00)00874-8
  39. Ho, W. H.; Hsieh, S. J. Anal. Chim. Acta 2001, 428, 111. https://doi.org/10.1016/S0003-2670(00)01219-8
  40. Boyd-Boland, A. A.; Pawliszyn, J. J. Chromatogr. A 1995, 704,163. https://doi.org/10.1016/0021-9673(95)00151-C
  41. Barnabas, I. J.; Dean, J. R.; Fowlis, J. R.; Owen, S. P. J.Chromatogr. A 1995, 705, 305. https://doi.org/10.1016/0021-9673(95)00279-V
  42. Magdic, S.; Boyd-Boland, A. A.; Jinno, K.; Pawliszyn, J. J.Chromatogr. A 1996, 736, 219. https://doi.org/10.1016/0021-9673(95)01349-0
  43. Jinno, K.; Muramatsu, T.; Saito, Y.; Kiso, Y.; Magdic, S.Pawliszyn, J. J. Chromatogr. A 1996, 754, 137. https://doi.org/10.1016/S0021-9673(96)00212-9
  44. Choudhury, T. K.; Gerhardt, K. O.; Mawhinney, T. P. Environ. Sci.Technol. 1996, 30, 3259. https://doi.org/10.1021/es960040w
  45. Sng, M. T.; Lee, F. K.; Lakso, H. A. J. Chromatogr. A 1997, 759,225. https://doi.org/10.1016/S0021-9673(96)00727-3
  46. Valor, I.; Molto, J. C.; Apraiz, D.; Font. G. J. Chromatogr. A 1997,767, 195. https://doi.org/10.1016/S0021-9673(97)00027-7
  47. Eisert, R.; Levsen, K.; Wuensch, G. J. Chromatogr. A 1994, 683,175. https://doi.org/10.1016/S0021-9673(94)89114-1
  48. Wu, J.; Mester, Z.; Pawliszyn, J. Anal. Chim. Acta 2000, 424, 211. https://doi.org/10.1016/S0003-2670(00)01153-3
  49. Poerschmann, J.; Kopinke, F. D.; Pawliszyn, J. Environ. Sci.Technol. 1997, 31, 3629. https://doi.org/10.1021/es970377d
  50. Pan, L.; Adams, M.; Pawliszyn, J. Anal. Chem. 1995, 67, 4396. https://doi.org/10.1021/ac00119a031
  51. Gorecki, T.; Pawliszyn, J. Anal. Chem. 1996, 68, 3008. https://doi.org/10.1021/ac9601270
  52. Stashenko, E. E.; Puertas, M. A.; Salgar, W.; Delgado, W.;Martinez, J. R. J. Chromatogr. A 2000, 886, 175. https://doi.org/10.1016/S0021-9673(00)00479-9
  53. Mills, G. A.; Walker, V.; Mughal, H. J. Chromatogr. B 1999, 723,281. https://doi.org/10.1016/S0378-4347(98)00542-8
  54. Kataoka, H.; Lord, H. L.; Pawliszyn, J. J. Chromatogr. B 1999,731, 353. https://doi.org/10.1016/S0378-4347(99)00237-6
  55. Elke, K.; Jermann, E.; Begerow, J.; Dunemann, L. J. Chromatogr.A 1998, 826, 191. https://doi.org/10.1016/S0021-9673(98)00736-5
  56. Yassaa, N.; Meklati, B. Y.; Cecinato, A. J. Chromatogr. A 1999,846, 287. https://doi.org/10.1016/S0021-9673(99)00327-1
  57. Dermietzel, J.; Strenge, G. F. J. Anal. Chem. 1999, 364, 645. https://doi.org/10.1007/s002160051404
  58. Gorlo, D.; Zygmunt, B.; Dudek, M.; Jaszek, A.; Pilarczyk, M.;Namiesnik, J. F. J. Anal. Chem. 1999, 363, 696. https://doi.org/10.1007/s002160051273
  59. Haberhauer-Troyer, C.; Rosenberg, E.; Grasserbauer, M. J.Chromatogr. A 1999, 848, 305. https://doi.org/10.1016/S0021-9673(99)00459-8
  60. Bartelt, R. J.; Zilkowski, B. W. Anal. Chem. 1999, 71, 92. https://doi.org/10.1021/ac980785f
  61. Page, B. D.; Lacroix, G. J. Chromatogr. A 2000, 873, 79. https://doi.org/10.1016/S0021-9673(99)01201-7
  62. Elmore, J. S.; Mottram, D. S.; Hierro, E. J. Chromatogr. A 2000,905, 233. https://doi.org/10.1016/S0021-9673(00)00990-0
  63. U.S. EPA, Method 18, Code of Federal Regulations; 1987, Part60; Title 40
  64. Appendix A. Alpendurada, M. J. Chromatogr. A2000, 889, 3. https://doi.org/10.1016/S0021-9673(00)00453-2
  65. Chai, M.; Pawliszyn, J. Environ. Sci. Technol. 1995, 29, 693. https://doi.org/10.1021/es00003a017

Cited by

  1. Current Awareness vol.37, pp.8, 2002, https://doi.org/10.1002/jms.255
  2. Computational Methods for Metabolomic Data Analysis of Ion Mobility Spectrometry Data—Reviewing the State of the Art vol.2, pp.4, 2012, https://doi.org/10.3390/metabo2040733
  3. Simultaneous Determination of Chlorinated Ethenes and Ethene in Groundwater Using Headspace Solid-Phase Microextraction with Gas Chromatography vol.52, pp.2, 2013, https://doi.org/10.1093/chromsci/bms258
  4. Analysis of Benzene Exposure Levels on Commuters Traveling within the Metropolitan Area of Costa Rica vol.04, pp.01, 2015, https://doi.org/10.4236/ojap.2015.41005
  5. Comparison of Three Methods for Extraction of Volatile Lipid Oxidation Products from Food Matrices for GC–MS Analysis vol.93, pp.7, 2016, https://doi.org/10.1007/s11746-016-2837-2
  6. Detection of gas traces using semiconductor sensors, ion mobility spectrometry, and mass spectrometry vol.23, pp.4, 2017, https://doi.org/10.1177/1469066717720795
  7. Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction vol.387, pp.6, 2007, https://doi.org/10.1007/s00216-006-1066-1
  8. Solid-phase microextraction coupled to gas chromatography with flame ionization detection for monitoring of organic solvents in working areas vol.165, pp.3-4, 2009, https://doi.org/10.1007/s00604-008-0128-9
  9. Solid-Phase Microextraction (SPME) Techniques for Quality Characterization of Food Products: A Review vol.4, pp.1, 2011, https://doi.org/10.1007/s11947-009-0299-3
  10. Time series of indoor analytes and influence of exogeneous factors on interpretation of breath analysis using ion mobility spectrometry (MCC/IMS) pp.1865-4584, 2019, https://doi.org/10.1007/s12127-019-00243-1
  11. Double-layer Tedlar bags: a means to limit humidity evolution of air samples and to dry humid air samples vol.384, pp.2, 2006, https://doi.org/10.1007/s00216-005-0177-4
  12. In-tube extraction for enrichment of volatile organic hydrocarbons from aqueous samples vol.1179, pp.2, 2008, https://doi.org/10.1016/j.chroma.2007.11.100
  13. Biomarker validation-room air variation during human breath investigations vol.13, pp.3, 2010, https://doi.org/10.1007/s12127-010-0044-7
  14. One-year time series of investigations of analytes within human breath using ion mobility spectrometry vol.13, pp.3, 2010, https://doi.org/10.1007/s12127-010-0052-7
  15. Detection of infectious agents in the airways by ion mobility spectrometry of exhaled breath vol.14, pp.4, 2002, https://doi.org/10.1007/s12127-011-0077-6
  16. 소형 GC 모듈의 개발 및 특성 vol.55, pp.2, 2011, https://doi.org/10.5012/jkcs.2011.55.2.157
  17. Wash-out of ambient air contaminations for breath measurements vol.8, pp.2, 2002, https://doi.org/10.1088/1752-7155/8/2/027107
  18. 질소 플라즈마 공정을 이용한 염화이불화메탄(CHClF2) 열분해 vol.28, pp.2, 2002, https://doi.org/10.14478/ace.2016.1123
  19. Perylene Imide-Based Optical Chemosensors for Vapor Detection vol.9, pp.1, 2021, https://doi.org/10.3390/chemosensors9010001
  20. Supramolecular self-assembly of a nitro-incorporating quinoxaline framework: insights into the origin of fluorescence turn-on response towards the benzene group of VOCs vol.146, pp.20, 2002, https://doi.org/10.1039/d1an01127h