DOI QR코드

DOI QR Code

Copper(II) Oxyanion Complexes Derived from Sparteine Copper(II) Dinitrate: Synthesis and Characterization of 4- and 5-Coordinate Copper(II) Complexes


Abstract

Nine copper(Ⅱ) oxyanion, and mixed oxyanion complexes that have four- or five-coordinate geometries around copper(Ⅱ) centers were derived from sparteine copper(Ⅱ) dinitrate precursor [Cu($C_{15}$$H_{26}$N2)(NO3)2]. The precursor complex undergoes an anion exchange with various oxyanions, and an interchange reaction with other sparteine copper(Ⅱ) complexes. The [Cu($C_{15}$$H_{26}$N2)(CH3CO2)2] also undergoes "halogen atom abstraction" reaction with CCl4 to produce the mixed anion complex [Cu($C_{15}$$H_{26}$N2)(CH3CO2)Cl]. The whole set of prepared complexes has been used for the comparative electrochemical and spectroscopic studies.

Keywords

References

  1. Armstrong, W. H. Metalloprotein Crystallography in Metal Cluster in Proteins; Que Jr., L., Eds.; Am. Chem. Soc.: Washing D. C., 1988.
  2. Solomon, E. I.; Lowery, M. D.; Lacriox, L. B.; Root,D. E. Methods in Enzymology 1993, 226, 1. https://doi.org/10.1016/0076-6879(93)26003-R
  3. Norris, G. E.; Anderson, B. F.; Baker, D.; Baker, E. N. J. Am.Chem. Soc. 1986, 108, 2784. https://doi.org/10.1021/ja00270a064
  4. Whittaker, M. M.; Duncan, W. R.; Whittaker, J. W. Inorg. Chem.1996, 35, 382. https://doi.org/10.1021/ic951116c
  5. Pierloot, K.; Dekerpl, J. O. A.; Rydo, U.; Roos, B. O. J. Am.Chem. Soc. 1997, 119, 218. https://doi.org/10.1021/ja962381f
  6. Guss, J. M.; Harrowell, P. R.; Murata, M.; Norris, V. A.; Freeman,H. C. J. Mol. Biol. 1986, 192, 361. https://doi.org/10.1016/0022-2836(86)90371-2
  7. Solomon, E. I.; Baldwin, M. J.; Lowery, M. D. Chem. Rev. 1992,92, 521. https://doi.org/10.1021/cr00012a003
  8. Addison, A.; Sinn, E. Inorg. Chem. 1983, 22, 1225. https://doi.org/10.1021/ic00150a017
  9. John, E.; Bharadwaj, P. K.; Potenzo, J. A.; Schugar, H. J. Inorg.Chem. 1986, 25, 3065. https://doi.org/10.1021/ic00237a028
  10. Place, E.; Zimmerman, J.-L.; Mulliz, E.; Guillot, G.; Bois, C.;Chottard, J. C. Inorg. Chem. 1998, 37, 4030. https://doi.org/10.1021/ic9715660
  11. Lu, Z.-L.; Duan, C.-Y.; Tian, Y.-P.; You, X. Z. Inorg. Chem. 1996,35, 2253. https://doi.org/10.1021/ic950362l
  12. Mason, S. F.; Peocock, R. D. J. Chem. Soc., Dalton Trans. 1973,226.
  13. Boschman, E.; Winstock, L. M.; Carmack, M. Inorg. Chem. 1974,13, 1298.
  14. Fraenkel, G.; Appleman, B.; Ray, J. G. J. Am. Chem. Soc. 1974,96, 5113. https://doi.org/10.1021/ja00823a017
  15. Kuroda, R.; Mason, S. F. J. Chem. Soc., Dalton Trans. 1977, 317.
  16. Boschman, E.; Nypaver, G. A.; Majors, J. P.; Ealy, S. M.; vanHorn, M. J. Coord. Chem. 1978, 7, 141. https://doi.org/10.1080/00958977808073053
  17. Togni, A.; Rihs, G.; Pregosin, P. S.; Ammann, C. Helv. Chim. Acta1990, 73, 723. https://doi.org/10.1002/hlca.19900730321
  18. Childers, L. S.; Folting, K.; Merritt, Jr., L.; Streib, W. Acta Cryst.1975, B31, 924.
  19. Kuroda, R.; Mason, S. F. J. Chem. Soc., Dalton Trans. 1977, 727.
  20. Choi, S.-N.; Bereman, R. D.; Wasson, J. R. J. Inorg. Nucl. Chem.1975, 37, 2087. https://doi.org/10.1016/0022-1902(75)80835-9
  21. Lopez, S.; Muravyov, I.; Pulley, S. R.; Keller, S. W. Acta Cryst.1998, C54, 355.
  22. Choi, S.-N.; Kwon, M.-A.; Kim, Y.; Bereman, R. D.; Singh, P.;Knight, B.; Seff, K. J. Coord. Chem. 1995, 34, 241. https://doi.org/10.1080/00958979508024313
  23. Lee, Y.-M.; Choi, S.-N.; Suh, I.-H.; Bereman, R. D. Acta Cryst.1998, C54, 1582.
  24. Lee, Y.-M.; Chung, G.; Kwon, M.-A.; Choi, S.-N. Acta Cryst.2000, C56, 67.
  25. Lee, Y.-M.; Jung, H.-C.; Choi, S.-N.; Hur, N.-H. J. Korean Chem.Soc. 2000, 44, 1.
  26. Brown, D. G.; Vogel, G. C. Inorg. Chem. 1978, 17, 1363. https://doi.org/10.1021/ic50183a052
  27. Lindsay, E.; Malkhasian, A. Y. S.; Langford, L. H. Inorg. Chem.1994, 33, 944. https://doi.org/10.1021/ic00083a018
  28. Anderson, J. M.; Kochi, J. K. J. Am. Chem. Soc. 1970, 92,2450. https://doi.org/10.1021/ja00711a041
  29. Sheldon, R. A.; Kochi, J. K. J. Am. Chem. Soc. 1968, 90,6688. https://doi.org/10.1021/ja01026a022
  30. Lever, A. B. P. Inorganic Electronic Spectroscopy, 2nd Ed.;Elsevier: New York, 1984.
  31. Fabbrizz, L.; Poggi, A.; Zanello, P. J. Chem. Soc., Dalton Trans.1983, 2191.
  32. Sakaguchi, U.; Addison, A. W. J. Chem. Soc., Dalton Trans. 1978,600.

Cited by

  1. -isosparteine complexes with copper(II) sulfate vol.60, pp.22, 2007, https://doi.org/10.1080/00958970701272110
  2. Mass Spectrometry of Metal Complexes of Bis-Quinolizidine Alkaloids: Electron Ionization and Fast Atom Bombardment Mass Spectral Study of Copper(II) (–)-Sparteine and (–)-α-Isosparteine Complexes vol.15, pp.4, 2009, https://doi.org/10.1255/ejms.1003
  3. Electron ionization and fast atom bombardment mass spectral study for differentiation of ligand of zinc(II) (–)-sparteine and (–)-α-isosparteine complexes vol.22, pp.8, 2008, https://doi.org/10.1002/rcm.3464
  4. Bis(3-methylpyridinium) tetrachloridocuprate(II) vol.65, pp.4, 2009, https://doi.org/10.1107/S1600536809007818
  5. Synthesis and Characterization of Pseudotetrahedral Copper(II) Dihalide Complexes with (s)-(-)-Nicotine vol.25, pp.12, 2002, https://doi.org/10.5012/bkcs.2004.25.12.1959
  6. Crystal Structures and Characterization of Copper(II) Complexes of N,N,N'N'-Tetrakis(2-pyridylmethyl)-1,2-ethanediamine vol.25, pp.6, 2002, https://doi.org/10.5012/bkcs.2004.25.6.796
  7. Crystal Structures and Magnetic Properties of Sparteinium Tetrahalocuprate Monohydrate Compounds vol.25, pp.6, 2004, https://doi.org/10.5012/bkcs.2004.25.6.823
  8. A comparative study of sparteine, α-isosparteine and 2-methylsparteine monoperchlorate salts and zinc (II) complexes by NMR chemical shifts vol.752, pp.1, 2002, https://doi.org/10.1016/j.molstruc.2005.05.034
  9. Synthesis, spectral and structural characterization of zinc(II) methacrylate complexes with sparteine and α-isosparteine: The role of hydrogen bonds and dipolar interactions in stabilizing the m vol.753, pp.1, 2002, https://doi.org/10.1016/j.molstruc.2005.05.046
  10. Crystal structure, spectroscopy and magnetism of selected (−)sparteine and α-isosparteine tetrahalocuprate salts vol.794, pp.1, 2002, https://doi.org/10.1016/j.molstruc.2006.02.057
  11. Preparation and Characterization of Nicotinium Tetrahalocuprate(II) and Tetrahalocobaltate(II) Complexes : Structure of Nicotinium Tetrachlorocobaltate(II) vol.27, pp.11, 2002, https://doi.org/10.5012/bkcs.2006.27.11.1877
  12. Synthesis and structural characterization of zinc(II) acetate complex with α-isosparteine vol.875, pp.1, 2002, https://doi.org/10.1016/j.molstruc.2007.04.016
  13. Crystal structure of sparteinium tetrachlorocuprate monohydrate-packing polymorph vol.150, pp.7, 2002, https://doi.org/10.1007/s00706-019-02426-2
  14. A Monocationic Zn(II) Acetate Complex of a Chiral Bisamidine Dioxolane Ligand, Naph-diPIM-dioxo-R, for the Asymmetric 1,3-Dipolar Cycloaddition of Tridentate α-Substituted α-Imino Esters a vol.94, pp.1, 2002, https://doi.org/10.1246/bcsj.20200266
  15. A Monocationic Zn(II) Acetate Complex of a Chiral Bisamidine Dioxolane Ligand, Naph-diPIM-dioxo-R, for the Asymmetric 1,3-Dipolar Cycloaddition of Tridentate α-Substituted α-Imino Esters a vol.94, pp.1, 2002, https://doi.org/10.1246/bcsj.20200266