DOI QR코드

DOI QR Code

Assembly of Laccase over Platinum Oxide Surface and Application as an Amperometric Biosensor


Abstract

Laccase could be successfully assembled on an amine-derivatized platinum electrode by glutaraldehyde coupling. The enzyme layer formed on the surface does not communicate electron directly with the electrode, but the enzymatic activity of the surf ace could be followed by electrochemical detection of enzymatically oxidized products. The well-known laccase substrates, ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)) and PPD (p-phenylenediamine) were used. ABTS can be detected down to 0.5 ${\mu}M$ with linear response up to 15 ${\mu}M$ and current sensitivity of 75 nA/ ${\mu}M.$ PPD showed better response with detection limit of 0.05 ${\mu}M$, linear response up to 20 ${\mu}M$, and current sensitivity of 340 nA/ ${\mu}M$ with the same electrode. The sensor responses fit well to the Michaelis-Menten equation and apparent $K_M$ values are 0.16 mM for ABTS and 0.055 mM for PPD, which show the enzymatic reaction is the rate-determining step. The laccase electrode we developed is very stable and more than 80% of initial activity was still maintained after 2 months of uses.

Keywords

References

  1. Solomon, E. I; Sundaram, U. M.; Machonkin, T. E. Chem. Rev.1996, 96, 2563. https://doi.org/10.1021/cr950046o
  2. Reinhammer, B. Chem. Scrip. 1985, 25, 172.
  3. Solomon, E. I.; Baldwin, M. J.; Lowery, M. D. Chem. Rev.1992, 92, 521. https://doi.org/10.1021/cr00012a003
  4. Bligny, R.; Douce, R. Biochem. J. 1983, 209, 489. https://doi.org/10.1042/bj2090489
  5. LaFayette, P. R.; Eriksson, K.-E. L.; Dean, J. F. D. Plant Physiol.1995, 107, 667. https://doi.org/10.1104/pp.107.2.667
  6. Sterjiades, R.; Dean, J. F. D.; Eriksson, K.-E.L. Plant Physiol. 1992, 99, 1162. https://doi.org/10.1104/pp.99.3.1162
  7. Driouich, A.; Laine, A.-C.;Vian, B.; Faye, L. Plant Physiol. 1992, 2, 13.
  8. Bao, W.;O'Malley, D. M.; Whetten, R.; Sederoff, R. R. Science 1993, 260, 672. https://doi.org/10.1126/science.260.5108.672
  9. Bollag, J. M.; Leonowicz, A. Appl. Environ. Microbiol. 1984,48, 849.
  10. Dean, J. F. D.; Eriksson, K.-E. L. Holzforschung1994, 48, 21. https://doi.org/10.1515/hfsg.1994.48.s1.21
  11. Wahleithner, J. A.; Xu, F.; Brown, K. M.; Brown, S. H.; Gotightly,E. J.; Halkier, T.; Kauppimen, S.; Pederson, A.; Schneider, P. Curr.Genet. 1996, 29, 395. https://doi.org/10.1007/BF02208621
  12. Hoshi, T.; Anzai, J.-I.; Osa, T. Anal. Chem. 1995, 67, 770. https://doi.org/10.1021/ac00100a013
  13. Kajiya, Y.; Okamoto, T.; Yoneyama, H. Chemistry Letters 1993,2107.
  14. Riklin, A.; Willner, I. Anal. Chem. 1995, 67, 4118. https://doi.org/10.1021/ac00118a014
  15. deLumley-Woodyear, T.; Rocca, P.; Lindsay, J.; Dror, Y.; Freeman,A.; Heller, A. Anal. Chem. 1995, 67, 1332. https://doi.org/10.1021/ac00104a006
  16. Calvo, E. H.;Danilowicz, C.; Diaz, L. J. Electroanal. Chem. 1994, 369, 279. https://doi.org/10.1016/0022-0728(94)87112-4
  17. Tatsuma, T.; Saito, K.; Oyama, N. Anal. Chem. 1994, 66, 1002. https://doi.org/10.1021/ac00079a012
  18. Lee, C.W.; Gray, H. B.; Anson, F. C.; Malmstrom, B. G. J.Electroanal. Chem. 1984, 172, 289. https://doi.org/10.1016/0022-0728(84)80193-X
  19. Ruiz, A. I.; Malave, A. J.; Felby, C.; Griebenow, K. Biotech. Lett.2000, 22, 229. https://doi.org/10.1023/A:1005698301681
  20. Annibale, A. D.; Stazi, S. R.; Vinciguerra, V.; Mattia, C. D.;Sermanni, G. G. Process Biochem. 1999, 34, 697. https://doi.org/10.1016/S0032-9592(98)00144-7
  21. Reyes, P.; Pickard, M.; Vazquez-Duhalt, A. R. Biotech. Lett. 1999,21, 875. https://doi.org/10.1023/A:1005502906890
  22. Bogdanovskaya, V. A.; Tarasevich, M. R.; Sheller, F.; Pfeifer,D.; Wollenberger, U. Electrokhimiya 1987, 23, 666.
  23. Crecchio,C.; Ruggiero, P.; Pizzigallo, M. D. V. Biotech. Bioeng. 1995, 48,585. https://doi.org/10.1002/bit.260480605
  24. Hyung, K. H.; Jun, K. Y.; Hong, H.-G.; Kim, H. S., Shin, W.Bull. Korean Chem. Soc. 1997, 18, 564.
  25. Hyung, K. H.; Shin,W. J. Korean Electrochem. Soc. 1999, 2, 31.
  26. Lisdat, F.; Wollenberger, U.; Makower, A.; Hortnagal, H.;Pfeiffer, D.; Scheller, F. W. Biosens. Bioelectron. 1997, 12(12),1199. https://doi.org/10.1016/S0956-5663(97)00098-5
  27. Ghindilis, A. L.; Makower, A.; Bauer, C. G.; Bier, F. F.;Sheller, F. W. Anal. Chim. Acta 1995, 304, 25. https://doi.org/10.1016/0003-2670(94)00580-F
  28. Xu, F.; Shin, W.; Brown, S. H.; Wahleithner, J.; Sundaram, U. M.;Solomon, E. I. Biochim. Biophys. Acta 1996, 1292, 303. https://doi.org/10.1016/0167-4838(95)00210-3
  29. Rakohl, M.; Urban, G. Sensors and Actuators B 1992, 7, 356. https://doi.org/10.1016/0925-4005(92)80324-Q
  30. Williams, R. A.; Blanch, H. W. Biosens. Bioelectron 1994, 9,159 https://doi.org/10.1016/0956-5663(94)80108-8
  31. Kharitonov, A. B.; Zayats, M.; Lichtenstein, A.; Katz, E.;Willner, I. Sensors and Actuators B 2000, 70, 222. https://doi.org/10.1016/S0925-4005(00)00573-6
  32. Freire, R.S.; Duran, N.; Kubota, L. T. Talanta 2001, 54, 681. https://doi.org/10.1016/S0039-9140(01)00318-6
  33. Bourbonnais, R.; Leech, D.; Paice, M. G. Biochim. Biophys. Acta1998, 1379, 381. https://doi.org/10.1016/S0304-4165(97)00117-7
  34. Price, N. C.; Stevens, L. Fundamentals of Enzymology; Oxford:New York, 1999; p 118.
  35. Bourbonnais, R.; Paice, M. G. FEBS Lett. 1990, 267, 99. https://doi.org/10.1016/0014-5793(90)80298-W
  36. Adams, R. N. Electrochemistry at Solid Electrodes; MarcelDekker, Inc.: New York, 1969; p 356.
  37. Rahni, M. A. N.; Lubrano, G. J.; Guilbault, G. G. J. Agric. FoodChem. 1987, 35, 1001. https://doi.org/10.1021/jf00078a034

Cited by

  1. Resonance Raman Evidence of Immobilization of Laccase on Self-Assembled Monolayers of Thiols on Ag and Au Surfaces vol.60, pp.7, 2006, https://doi.org/10.1366/000370206777887035
  2. Heterologous laccase production and its role in industrial applications vol.1, pp.4, 2010, https://doi.org/10.4161/bbug.1.4.11438
  3. Nanoparticles as Support vol.52, pp.12, 2013, https://doi.org/10.1021/ie302627c
  4. Enhanced production of laccase fromTrametes sp. by combination of various inducers vol.11, pp.2, 2006, https://doi.org/10.1007/BF02931890
  5. Thick Film Ceramic Combinatorial Libraries: The Substrate Problem vol.26, pp.10, 2007, https://doi.org/10.1002/qsar.200620162
  6. An Electrochemical Biosensor Array for Rapid Detection of Alanine Aminotransferase and Aspartate Aminotransferase vol.73, pp.3, 2009, https://doi.org/10.1271/bbb.60043
  7. Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure vol.7, pp.2, 2002, https://doi.org/10.5229/jkes.2004.7.2.083
  8. Immobilization of ABTS – laccase system in silicate based electrode for biolectrocatalytic reduction of dioxygen vol.8, pp.12, 2002, https://doi.org/10.1016/j.elecom.2006.08.024
  9. Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode vol.103, pp.1, 2007, https://doi.org/10.1263/jbb.103.32
  10. The evolution and developments of immunosensors for health and environmental monitoring: problems and perspectives vol.26, pp.2, 2002, https://doi.org/10.1590/s0104-66322009000200001
  11. Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction : SECM activity mapping and application in zinc-dioxygen battery vol.54, pp.20, 2009, https://doi.org/10.1016/j.electacta.2009.02.072
  12. Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode vol.12, pp.4, 2002, https://doi.org/10.1016/j.elecom.2010.01.038
  13. Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In Situ Determination of Phenolic Compounds vol.2015, pp.None, 2002, https://doi.org/10.1155/2015/845261
  14. Improvement of amperometric laccase biosensor using enzyme-immobilized gold nanoparticles coupling with ureasil polymer as a host matrix vol.52, pp.2, 2019, https://doi.org/10.1007/s13404-019-00255-z