Antimicrobial Characteristics of Metabolites of Lactic Acid Bacteria Isolated from Feces of Newborn Baby and from Dongchimi

신생아 분변 및 동치미에서 분리한 젖산균 대사산물의 항균특성

  • Lee, Ji-Young (Faculty of Biotechnology (Food Science and Technology), Chonbuk National University) ;
  • Park, Yeong-Soo (Faculty of Biotechnology (Food Science and Technology), Chonbuk National University) ;
  • Kim, Yong-Suk (Faculty of Biotechnology (Food Science and Technology), Chonbuk National University) ;
  • Shin, Dong-Hwa (Faculty of Biotechnology (Food Science and Technology), Chonbuk National University)
  • 이지영 (전북대학교 응용생물공학부(식품공학) 및 농업과학기술연구소) ;
  • 박영수 (전북대학교 응용생물공학부(식품공학) 및 농업과학기술연구소) ;
  • 김용석 (전북대학교 응용생물공학부(식품공학) 및 농업과학기술연구소) ;
  • 신동화 (전북대학교 응용생물공학부(식품공학) 및 농업과학기술연구소)
  • Published : 2002.06.01

Abstract

The antimicrobial effects of metabolites from isolated strains from feces of Korean newborn baby and from Dongchimi against six food-borne microorganisms, and characteristics of the metabolites were investigated.. The metabolites from isolated strains adjusted pH to 3.5, 4.0, and 4.5 showed strong growth inhibition against S. Typhimurium, and S. Enteritidis. The metabolites has kept its inhibition activities to the pathogens after catalase, trypsin or pepsin treatment. In addition, antimicrobial activity of metabolites was not decreased by heat treatment at $121^{\circ}C$ for 15 min. D2 and F35-2 strains were confirmed homofermentative and F20-3 was heterofermentative bacteria identified by final organic acid and gas production. The amount of lactic acid produced by D2 and F35-2 strains after 24 h of incubation was 1.84 and 1.85% respectively, but F20-3 strain produced acetic acid (0.22%) and lactic acid (0.91%).

식중독 미생물의 증식을 억제하며, probiotic으로 작용할 수 있는 균주로서 가능성이 있는 젖산균을 신생아 분변과 동치미서 젖산균을 분리(0.15%의 담즙산염과 pH 3.0인 산성조건)하였고, 항균활성이 우수한 젖산균을 선발하였다. D2와 F35-2 균주는 Lactobacillus plantarum, F20-3 균주는 L. fermentum으로 동정되었다. 젖산균 대사산물의 특성과 항균 기작을 알아보기 위해 몇 종의 식중독 미생물(Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Salmonlla Typhimurium, Escherichia, coli O157:H7, Salmonella Enteritdis)을 사용하였으며, 항균활성 Bioscreen C로 측정하였다. 젖산균의 대사산물의 특성을 확인한 결과 pH가 중성으로 갈수록 항균효과가 감소하는 경향을 나타내었다. Catalase 효소처리 후에는 F20-3 균주만 항균활성이 소실되어 항균활성의 원인으로 $H_2O_2$의 영향이 있을 것으로 추정되었다. 단백질 분해 효소(trypsin, pepsin)처리에는 항균활성에 영향이 없었고, $121^{\circ}C$ 15분간 열처리에도 안정한 물질로 추정되었다. 분리균주 대사산물은 유사한 pH와 젖산 농도보다 식중독 미생물의 증식 억제가 우수하여 분리된 균주의 증식억제 물질은 유기산 및 대사산물과 관계가 있을 것으로 추정되었다. 분리균주가 생성하는 유기산을 HPLC로 정량 한 결과, D2와 F35-2는 발효 24시간에 각각 1.84, 1.85%의 젖산만이 생성되었고, F20-3은 발효 24시간에 0.91%의 젖산과 0.22%의 초산을 생성하였다. 이것으로 볼 때 젖산발효형태는 D2와 F35-2는 homo형이고, F20-3은 hetero형의 발효를 하는 것으로 확인되었다.

Keywords

References

  1. Gilliand, S.E. Acidophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 72: 2483-2494 (1989) https://doi.org/10.3168/jds.S0022-0302(89)79389-9
  2. Gilliand, S.E., Nelson, C.R. and Maxwell, C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 337-343 (1985)
  3. Shortt, C. The probiotic century: historical and current perspectives. Trends in Food Sci. Technol. 10: 411-417 (1999) https://doi.org/10.1016/S0924-2244(00)00035-2
  4. Loucif, F. and Melzi, A. In vitro study of antagonistic activity of Bifidobacteria against Campylobacter and Escherichia coli causing gastroententis in children. Archives. Institut. Pasteur d'Algerie. 62: 63-76 (1998)
  5. Harasawa, R., Suzuki, K. and Mitsuoka, T. Streptococcus faecium-derived antibacterial substance antagonistic to Bifidobacteria. Antimicrob. Agents and Chemother. 18: 58-62 (1980) https://doi.org/10.1128/AAC.18.1.58
  6. Pitt, W.M., Harden, T.J. and Hull, R.R. Behavior of Listeria monocytogenes in pasteurized milk during fermentation with lactic acid bacteria. J. Food Prot. 63: 916-920 (1999)
  7. Brashears, M.M. and Durre, W.A. Antagonistic action of Lactobacillus lactis toward Salmonella spp. and Escherichia coliO157:H7 during growth and refrigerated storage. J. Food Prot. 62: 1336-1340 (1999) https://doi.org/10.4315/0362-028X-62.11.1336
  8. Lee, M.K., Park, B.K., Jeong, C.K. and Oh, D.H. Antimicrobial activity of glycerol monolaurate and organic acids on the survival of Escherichia coli O157:H7. J. Food Sci. Nutr. 6: 6-9 (2001)
  9. Buchanan, R.L. and Golden, M.H. Interaction of citric acid concentration and pH on the kinetics of Listeria monocytogenes inactivation. J. Food Prot. 57: 567-570 (1994) https://doi.org/10.4315/0362-028X-57.7.567
  10. Dahiya, R.S. and Speck, M.L. Hydrogen peroxide formation by Lactobacilli and its effects on Staphylococcus aureus. J. Dairy Sci. 51: 1568-1573 (1968) https://doi.org/10.3168/jds.S0022-0302(68)87232-7
  11. Gilliland, S.E. and Ewell, H.R. Influence of combinations of Lactobaillus lactis and potassium sorbate on growth of psychrotrophs in raw milk. J. Dairy Sci. 66: 974-980 (1983) https://doi.org/10.3168/jds.S0022-0302(83)81889-X
  12. Hamdan, I.Y. and Mikolajcik, E.M. Acidolin: an antibiotic activity of Lactobacillus acidophilus. J. Antibiotics 27: 631-636 (1974) https://doi.org/10.7164/antibiotics.27.631
  13. Shahani, K.M., Vakil, J.F. and Kilara, A. Natural antibiotic activity of Lactobacillus acidophilus and hulgaricus and isolation of acidophilin from Lactobacillus acidophilus culture. J. Dairy Prod. 12:8-11 (1977)
  14. Jay, J.M. Antimicrobial properties of diacetyl. Appl. Environ. Microbiol. 44: 525-530 (1982)
  15. Paul, K. and Ohlsson, A. The Chemical Structure of Lactoperoxidase in the Lactoperoxidase System, PP. 14-22. Marcel Dekker, New York, USA (1985)
  16. Lee, J.Y. Growth inhibition of some food-borne microorganisms by lactic acid bacteria isolated from feces of newborn baby anddongchimi. M.S. thesis, Chonbuk National Univerisity, Jeonju (2002)
  17. Mitsuoka, T. Intestinal Bacteriology, pp. 477-480. Asakura Shoden, Tokyo, Japan (1990)
  18. Gorbach, S.L. and Goldin, B.R. Lactobacillus strains and methods of selection. U.S. Patent 4,839,281 (1989)
  19. Kuhnen, E., Sahl, H.G. and Brandis, H. Purification and proper ties of LIQ4, and antimicrobial substance produced by Strepto coccus faecalis var liquefaciens K4. J. Gen. Microbiol. 131 1925-1932 (1985)
  20. Kozak, W., Bardowiski, J. and Dobranski, W.T. Lactostrepcinacid bacteriocin produced by lactic streptococci. J. Dairy Res. 45: 247-249 (1978) https://doi.org/10.1017/S0022029900016423
  21. Kim, S.H., Sung, H.J. Shin, Y.S., Kim, D.H. and Lee, K.S. Inhibition effect of lactic acid bacteria and its metabolites on the growth of Staphylococcus aureus. Korean J. Food Sci. Technol 26: 644-648 (1994)
  22. Chin, H.S., Shim, J.S., Kim, J.M., Yang, R. and Yoon, S.S Detection and antibacteral activity of a bacteriocin produced Lactobacillus ptantarum. Food Sci. Biotechnol. 10: 461-467 (2001)
  23. Ildrim, Y.Z. and Johnson, M.G. Characterization and antimicrobial spectrum of bifidocin B, a bacteriocin produced by Bifidobacterium bifidwn NCFB 1454. J. Food Prot. 61: 47-51 (1998) https://doi.org/10.4315/0362-028X-61.1.47
  24. Block, S.S. Peroxygen Compounds in Disinfection, Sterilization and Preservation, 4th ed. pp. 169-180. Lea & Feabiger, Philadelphia, USA (1991)
  25. Kweon, J.J. Microbial inhibition by some lactic bacteria from kimchi. M.S. thesis, Chung-Ang Univerisity, Seoul (1983)
  26. Park, U.H. and Song, H.J. Antimicorbial activity of Lactobacitlus ptantarum Lp2 isolated from Kimchi. Korean J. Appl. Microbiol.Biotechnol. 19: 637-643 (1991)
  27. Daeschel, M.A., McKenny, M.C. and McDonald, L.C. Bacteriocidal activity of Lactobacillus plantarum C-11. Food Microbiol. 7:91-98 (1990) https://doi.org/10.1016/0740-0020(90)90014-9
  28. Ahamad, M. and Marth, E.H. Behavior of Listeria monocytogenes at 7, 13, 21, and 35$^\circ$C in tryptose broth acidified with acetic, citric or lactic acid. J. Food Prot. 52: 688-695 (1989) https://doi.org/10.4315/0362-028X-52.10.688
  29. Garrote, G.L., Abraham, A.G. and Antoni, G.L. Inhibitory power of Kefir: the role of organic acids. J. Food Prot. 63: 364-369 (2000) https://doi.org/10.4315/0362-028X-63.3.364
  30. Shin. Y.S. Studies on the survival of lactic acid bacteria and its effects in the condition of intestine. Ph.D. dissertation, Wonkwang Univerisity, Iksan (2000)
  31. Olasupo, N.A. Bactehocin of Lactobacitllus ptantarum strains from fermented foods. J. Folia Microbiologica. 41: 130-136 (1996) https://doi.org/10.1007/BF02814687
  32. Heinemann, C., Vlieg, J.E.T, Janssen, D.B., Busscher, H.J., Mei, H.C. and Reid, G. Purification and characterization of a surface binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiology Letters 190: 177-180 (2000) https://doi.org/10.1111/j.1574-6968.2000.tb09282.x
  33. Gutierrez, R.C., Santos, V. and Nadermacias, M.E. Protective effect of intranasally inoculated Lactobacillus fermentum against Streptococcus pneumoniae challenge on the mouse respiratory tract. FEMS Immunol. Med. Microbiol. 31: 187-195 (2001) https://doi.org/10.1111/j.1574-695X.2001.tb00519.x
  34. Smeianov, V., Scott, K. and Reid, G. Activity of cecropin Pl and FA-LL-37 against urogenital microflora. Microbes and Infection 2: 773-777 (2000) https://doi.org/10.1016/S1286-4579(00)90359-9