DOI QR코드

DOI QR Code

Effects of Intraperitoneally Administered Lipoic Acid, Vitamin E, and Linalool on the Level of Total Lipid and Fatty Acids in Guinea Pig Brain with Oxidative Stress Induced by H2O2

  • Celik, Sait (Department of Chemistry, Faculty of Science, Firat University) ;
  • Ozkaya, Ahmet (Department of Chemistry, Faculty of Science, Firat University)
  • Published : 2002.11.30

Abstract

The aim of our study was to investigate the protective effects of intraperitoneally-administrated vitamin E, dl-alpha lipoic acid, and linalool on the level of total lipid and fatty acid in guinea pig brains with oxidative stress that was induced by $H_2O_2$. The total brain lipid content in the $H_2O_2$ group decreased when compared to the $H_2O_2$ + vitamin E (p<0.05), $H_2O_2$ + linalool (p<0.05), ALA (p<0.05), control (p<0.01), linalool (p<0.01), and vitamin E (p<0.01) groups. While the proportion of total saturated fatty acid (${\Sigma}SFA$) in the $H_2O_2$ group significantly increased (p<0.005) when compared to the vitamin E group, it only slightly increased (p<0.01) when compared to the control and $H_2O_2$ + vitamin E groups. The ratio of the total unsaturated fatty acid (${\Sigma}USFA$) in the $H_2O_2$ groups was lower (p<0.05) than the control, vitamin E, and $H_2O_2$ + vitamin E groups. The level of the total polyunsaturated fatty acid (${\Sigma}PUEA$) in the $H_2O_2$ group decreased in when compared to the control, vitamin E, and $H_2O_2$ + vitamin E groups. While the proportion of the total w3 (omega 3), w6 (omega 6), and PUFA were found to be lowest in the $H_2O_2$ group, they were slightly increased (p<0.05) in the lipoic acid group when compared to the control and $H_2O_2$ + lipoic acid groups. However, the level of ${\Sigma}SFA$ in the $H_2O_2$ group was highest; the level of ${\Sigma}USFA$ in same group was lowest. As the proportion of ${\Sigma}USFA$ and ${\Sigma}PUFA$ were found to be highest in the linalool group, they were decreased in the $H_2O_2$ group when compared to the control group. Our results show that linalool has antioxidant properties, much the same as vitamin E and lipoic acid, to prevent lipid peroxidation. Additionally, vitamin E, lipoic acid, and linalool could lead to therapeutic approaches for limiting damage from oxidation reaction in unsaturated fatty acids, as well as for complementing existing therapy for the treatment of complications of oxidative damage.

Keywords

References

  1. Bienwenga, G. P., Haenen, G. R. and Bast, A. (1997) The Pharmacology of the antioxidant lipoic acid. Gen Pharmacol. 29, 315-331. https://doi.org/10.1016/S0306-3623(96)00474-0
  2. Brenneisen, P., Briviba, K., Wlaschek, M., Wenk, J. and Kochanek, K. S. (1997) Hydrogen peroxide increases the steady-state mRNA levels of collagenase/KKP-1 in human dermal fibroblast. Free Radic. BioI. Med. 22, 515-524. https://doi.org/10.1016/S0891-5849(96)00404-2
  3. Burton, G. W., Foster, D. O., Perly, B., Slater, T. F., Smith, I. C. P. and lngold, K. U. (1985) Biological antioxidants. Philos. Trans. R. Soc. Lond. B. BioI. Sci. 311, 565-578. https://doi.org/10.1098/rstb.1985.0164
  4. Cameron, N. E., Cotter, M. A., Horrobin, D. H. and Tritschler, H. J. (1998) Effects of alpha lipoic acid on neurovascular function in diabetic rats: Interaction with essential fatty acid. Diabetologia 41, 390-399. https://doi.org/10.1007/s001250050921
  5. Celik, S., Yilmaz, O., Asan, T., Cay, M. and Aksakal, M. (1999) Influence of dietary selenium and vitamin E on the level of fatty acids of brain and liver tissues in lambs. Cell Biochem. Funct. 17, 115-121. https://doi.org/10.1002/(SICI)1099-0844(199906)17:2<115::AID-CBF816>3.0.CO;2-1
  6. Chow, K. C., Ibrahim, W., Wei, Z. and Chan, A. C. (1999) Vitamin E regulates mitochondrial hydrogen peroxide generation. Free Radic. Biol. Med. 27, 580-587. https://doi.org/10.1016/S0891-5849(99)00121-5
  7. Christie, W. W. (1990) Gas chromatography and lipids, The Oily Press. Glasgow, UK.
  8. Crowford, M. A. (1993) The role of essential fatty acids in neural development implications for prenatal nutrition. Am. J. Clin. Nutr. 57(Suppl), 703-710.
  9. Darr, D. and Fridovich, I. I. (1994) Free radical in cutaneous biology. J. Invest. Dermatol. 102, 671-675. https://doi.org/10.1111/1523-1747.ep12374036
  10. Dilsiz, N., Celik, S., Yilmaz, O. and Digrak, M. (1997) The effects of selenium, vitamin E and their combination on the composition of fatty acids and proteins in Saccharomyces cerevisiae. Cell Biochem. Funct. 15, 265-269. https://doi.org/10.1002/(SICI)1099-0844(199712)15:4<265::AID-CBF750>3.0.CO;2-D
  11. Diplock, A. T. (1994) Antioxidants and free radical scavengers; in Free Radical Damage anti its Control, Rice-Evans, C. A. and Burdon, R. H. (eds), pp. 113-130. Elsevier, Amsterdam, Netherlands.
  12. Dizdaroglu, M. (1993) Chemistry of free radical damage to DNA and nucleoproteins; in DNA and Free Radicals, Halliwell, B. and Aruoma, O. l. (eds). pp. 20-39. Ellis Horwood. New York, New York.
  13. Douillet, C., Chancerelle, Y., Chruz, C., Maroncles, C., Kergonou, J. F., Renaud, S. and Ciacatti, M. (1993) High dosage vitamin E effect on oxidative status and serum lipids distribution in streptozotocin-induced diabetic rats. Biochem. Med. Metab. BioI. 50, 265-276. https://doi.org/10.1006/bmmb.1993.1068
  14. Fahrenholtz, S. R., Doleiden, F. H., Trozzolo, A. M. and Lamola, A. A. (1974) On the quenching of singlet oxygen by alpha-tocopherol. Photochem. Photobiol. 20, 505-509. https://doi.org/10.1111/j.1751-1097.1974.tb06610.x
  15. Folch, J., Lees, M. and Sladane-Stanley, G. H. A. (1957) Simple method for the isolation and purification of total lipids from animals tissues. J. BioI. Chem. 226, 497-509.
  16. Foloyd, R. A., West, M. and Hensley, K. (2001) Oxidative biochemical markers; clues to understanding aging in long-lived species. Exp. Gerontol. 36, 619-640. https://doi.org/10.1016/S0531-5565(00)00231-X
  17. Frings, C. S., Frendley, T. W., Dunn, R. T. and Queen, C. R. (1972) Improved determination of total serum lipids the sulfo-phosphovanilin reaction. Clin. Chem. 18, 673-674.
  18. Fukuzowa, K. and Gebicki, J. M. (1983) Oxidation of alpha tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl and superoxide free radicals. Arch. Biochem. Biophys. 226, 242-251. https://doi.org/10.1016/0003-9861(83)90290-4
  19. Girotli, M. W. (1985) Mechanism of lipid peroxidation. Free Radic. BioI Med. 1, 87-95. https://doi.org/10.1016/0748-5514(85)90011-X
  20. Gurr, M. I. and Harwood, J. L. (1991) Fatty acid structure and metabolism; in Lipid Biochemistry an Introduction. Gurr, M. I. and Harwood, J. L. (eds), pp. 23-187, Chapman and Hall, London, UK.
  21. Haenen, G. R. M. M., Vermeulen, N. P. E., Timmerman, H. and Bast, A (1989) Effect of several thiols and lipid peroxidation in liver microsomes. Chem. Biol. Interact. 71, 201-212. https://doi.org/10.1016/0009-2797(89)90035-5
  22. Kagan, V. E., Shvedova, A., Serbinova, E., Khan, S., Swanson, C., Powell, R. and Packer, L. (1992) Dihydrolipoic acid-a universal antioxidant both in the membrane and in the aqueous phase, Reduction of peroxyl. ascorbyl and chromanoxyl radical. Biochem. Pharmacol. 44, 1637-1649. https://doi.org/10.1016/0006-2952(92)90482-X
  23. Kowaltowski, A. J. and Vercesi, A. E. (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 26, 463-471. https://doi.org/10.1016/S0891-5849(98)00216-0
  24. Kozlov, A. V., Gille, L., Stanick, K. and Nohl, H. (1999) Dihydrolipoic acid maintains ubiquinone in the antioxidant active form, by two electron reduction of ubiquinone and one-electron reduction of ubisemiquinone. Arch. Biochem. Biophys. 363, 148-154. https://doi.org/10.1006/abbi.1998.1064
  25. Littarru, G. P., Lippa, S., De Sole, P., Oradei, A., Dalla Torre, F. and Macri, M. (1984) Quenching of singlet oxygen by D-alpha- tocopherol in human granulocytes. Biochem. Biophys. Res. Commun. 119, 1056-1061. https://doi.org/10.1016/0006-291X(84)90881-7
  26. Machlin, L. J. and Bendich, A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1, 441-445.
  27. Magen, T. M., Ingersoll, R. S., Lykkesfeldt, J., Liu, J., Wehr, C. M., Vinarsky, V., Bartholomew, J. C. and Ames, B. N. (1999) Lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J. 13, 411-418.
  28. McCay, P. B. (1985) Vitamin E: Interactions with free radicals and ascorbate. Annu. Rev. Nutr. 5, 323-340. https://doi.org/10.1146/annurev.nu.05.070185.001543
  29. Ozawa, T., Hanaki, A. and Matsuo, M. (1983) Reactions of superoxide ion with tocopherol and model compounds: correlation between the physiological activities of tocopherols and the concentration of chromapoxyl radicals. Biochem. Int. 6, 685-692.
  30. Packer, L., Roy, S. and Sen, C. K. (1997) Alpha lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. Adv. Phannacol. 38, 79-101.
  31. Ptyor, W. A. (1973) Free radical reaction and their importance in biological systems. Fed. Proc. 32, 1862-1869.
  32. Re, L., Barocci, S., Sonnio, S., Mencorelli, A, Vivani, C, Paolucci, G., Scarpantonio, A., Rinaldi, L. and Mosca, E. (2000) Linolool modifies the nicotinic receptor-ion channel kinetics at the mouse neuromuscular junction. Pharmacol Res. 42, 177-182. https://doi.org/10.1006/phrs.2000.0671
  33. Reaven, P., Parthasarathy, S. and Grasse, B. J. (1991) Feasibility of using an oleate-rich diet to reduce the susceptibility of low density lipoprotein to oxidative modification in humans. Am. J. Clin. Nutr. 54, 701-706.
  34. Sobajic, S. S., Mihailovic, M. B. and Miric, M. O. (1998) The effects of selenium deficiency. dietary selenium and vitamin E supplementation on the oxidative status of pig liver. J. Environ. Pathol. Toxicol. Oncol. 17(3-4), 265-270.
  35. Sumatbi, R., Jayanthi, S. and Varalakshmi, P. I. (1993) DL-alpha-lipoic acid as a free radical scavenger in glyoxylate-induced lipid peroxidation. Med. Sci. Res. 21, 135-137.
  36. Traber, M. G. and Sies, H. (1996) Vitamin E in humans: demand and delivery. Annu. Dev. Nutr. 16, 321-347. https://doi.org/10.1146/annurev.nu.16.070196.001541
  37. Yaar, M. and Gilchrest, B. A. (1990) Cellular and molecular mechanisms of cutaneous aging. J. Dermatol. Surg. Oncol. 16. 915-922. https://doi.org/10.1111/j.1524-4725.1990.tb01555.x
  38. Yilmaz, O., Celik, S., Cay, M. and Dilsiz, N. (1997a) The Effects of dietary selenium and vitamin E on the fatty acids of erythrocytes, bone marrow and spleen tissues lipids of lambs. Cell Biochem. Funct. 15, 1-7. https://doi.org/10.1002/(SICI)1099-0844(199703)15:1<1::AID-CBF694>3.0.CO;2-Z
  39. Yilmaz, O., Celik, S. and Dilsiz, N. (1997b) Influence of Intraperitoneally and dietary administered vitamin E and selenium on the lipid composition in reproductive organs of male animals. Biol. Chem. 378, 425-430. https://doi.org/10.1515/bchm.1997.378.5.425

Cited by

  1. Linalool blocks excitability in peripheral nerves and voltage-dependent Na+ current in dissociated dorsal root ganglia neurons vol.645, pp.1-3, 2010, https://doi.org/10.1016/j.ejphar.2010.07.014
  2. Linalool decreases HepG2 viability by inhibiting mitochondrial complexes I and II, increasing reactive oxygen species and decreasing ATP and GSH levels vol.180, pp.1, 2009, https://doi.org/10.1016/j.cbi.2009.02.012
  3. Essential oils composition of two Sicilian cultivars ofOpuntia ficus-indica(L.) Mill. (Cactaceae) fruits (prickly pear) vol.27, pp.14, 2013, https://doi.org/10.1080/14786419.2012.734823
  4. Antioxidant activity of linalool in patients with carpal tunnel syndrome vol.16, pp.1, 2016, https://doi.org/10.1186/s12883-016-0541-3
  5. Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats vol.38, pp.2, 2015, https://doi.org/10.3109/01480545.2014.919585
  6. Enzyme-assisted microwave hydro-distillation essential oil from Fructus forsythia, chemical constituents, and its antimicrobial and antioxidant activities vol.134, pp.1, 2012, https://doi.org/10.1016/j.foodchem.2012.02.114
  7. Profile of spinal and supra-spinal antinociception of (−)-linalool vol.485, pp.1-3, 2004, https://doi.org/10.1016/j.ejphar.2003.11.066
  8. Coriander vol.51, pp.3, 2016, https://doi.org/10.1097/NT.0000000000000159
  9. Effects of α-lipoic and ascorbic acid on the muscle and brain fatty acids and antioxidant profile of the South American pacu Piaractus mesopotamicus vol.273, pp.1, 2007, https://doi.org/10.1016/j.aquaculture.2007.09.025
  10. Essential oils components as a new path to understand ion channel molecular pharmacology vol.89, pp.15-16, 2011, https://doi.org/10.1016/j.lfs.2011.04.020
  11. Lipoic Acid Prevents the Changes of Intracellular Lipid Partitioning by Free Fatty Acid vol.7, pp.2, 2013, https://doi.org/10.5009/gnl.2013.7.2.221
  12. Cyclodextrins enhance the antioxidant activity of essential oils from three Lamiaceae species vol.70, 2015, https://doi.org/10.1016/j.indcrop.2015.03.065
  13. (−)-Linalool, a naturally occurring monoterpene compound, impairs memory acquisition in the object recognition task, inhibitory avoidance test and habituation to a novel environment in rats vol.18, pp.10, 2011, https://doi.org/10.1016/j.phymed.2011.02.010
  14. α-lipoic acid ameliorates n-3 highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp ( Ctenopharyngodon idellus ) vol.67, 2017, https://doi.org/10.1016/j.fsi.2017.06.036
  15. GC–MS analysis of the essential oil of Celastrus paniculatus Willd. seeds and antioxidant, anti-inflammatory study of its various solvent extracts vol.61, 2014, https://doi.org/10.1016/j.indcrop.2014.07.025
  16. Linalool: a review on a key odorant molecule with valuable biological properties vol.29, pp.4, 2014, https://doi.org/10.1002/ffj.3197
  17. Assessment of the role of α-lipoic acid against the oxidative stress of induced iron overload vol.8, pp.1, 2015, https://doi.org/10.1016/j.jrras.2014.10.009
  18. Biologically Active Compounds from Hops and Prospects for Their Use vol.15, pp.3, 2016, https://doi.org/10.1111/1541-4337.12201
  19. Neuroprotective effects of (−)-linalool against oxygen-glucose deprivation-induced neuronal injury vol.39, pp.4, 2016, https://doi.org/10.1007/s12272-016-0714-z
  20. Evaluation of the antioxidative capability of commonly used antioxidants in dermocosmetics by in vivo detection of protein carbonylation in human stratum corneum vol.112, 2012, https://doi.org/10.1016/j.jphotobiol.2012.03.013
  21. Chemical Composition and Hypoglycemic and Pancreas-Protective Effect of Leaf Essential Oil from Indigenous Cinnamon (Cinnamomum osmophloeum Kanehira) vol.61, pp.20, 2013, https://doi.org/10.1021/jf401039z
  22. Protective effect of linalool, myrcene and eucalyptol against t-butyl hydroperoxide induced genotoxicity in bacteria and cultured human cells vol.47, pp.1, 2009, https://doi.org/10.1016/j.fct.2008.11.015
  23. Chemical profiling and biological screening of Thymus lotocephalus extracts obtained by supercritical fluid extraction and hydrodistillation vol.36, pp.1, 2012, https://doi.org/10.1016/j.indcrop.2011.09.014
  24. (−)-Linalool inhibits in vitro NO formation: Probable involvement in the antinociceptive activity of this monoterpene compound vol.78, pp.7, 2006, https://doi.org/10.1016/j.lfs.2005.05.065
  25. The Effects of Ellagic Acid and Vitamin E Succinate on Antioxidant Enzymes Activities and Glutathione Levels in Different Brain Regions of Rats After Subchronic Exposure to TCDD vol.69, pp.5, 2006, https://doi.org/10.1080/15287390500246431
  26. Monoterpenes with Analgesic Activity-A Systematic Review vol.27, pp.1, 2013, https://doi.org/10.1002/ptr.4686
  27. A Preliminary Investigation of α-Lipoic Acid Treatment of Antipsychotic Drug-Induced Weight Gain in Patients With Schizophrenia vol.28, pp.2, 2008, https://doi.org/10.1097/JCP.0b013e31816777f7
  28. Impact of Dietaryα-Lipoic Acid on Antioxidant Potential of Broiler Thigh Meat vol.2015, 2015, https://doi.org/10.1155/2015/406894
  29. Composition Analysis and Antioxidant Activities of the Essential Oil and the Hydrosol Extracted from Rosmarinus officinalis L. and Lavandula angustifolia Mill. Produced in Jeju vol.56, pp.3, 2013, https://doi.org/10.3839/jabc.2013.023
  30. Protective effect of basil (Ocimum basilicum L.) against oxidative DNA damage and mutagenesis vol.46, pp.2, 2008, https://doi.org/10.1016/j.fct.2007.09.102
  31. Addition of Lippia alba (Mill) N. E. Brown essential oil to the diet of the silver catfish: An analysis of growth, metabolic and blood parameters and the antioxidant response vol.416-417, 2013, https://doi.org/10.1016/j.aquaculture.2013.09.036
  32. Reversible effects of vitamins C and E combination on cognitive deficits and oxidative stress in the hippocampus of melamine-exposed rats vol.132, 2015, https://doi.org/10.1016/j.pbb.2015.03.009
  33. Improvement of air quality by volatile compounds from woody plants vol.42, pp.1, 2011, https://doi.org/10.2171/jao.42.27
  34. Boiss L. and its constituents focus on their anti-inflammatory, antioxidant, and immunomodulatory effects vol.32, pp.1, 2018, https://doi.org/10.1111/fcp.12331