DOI QR코드

DOI QR Code

Secretion of Pem-CMG, a Peptide in the CHH/MIH/GIH Family of Penaeus monodon, in Pichia pastoris Is Directed by Secretion Signal of the α-Mating Factor from Saccharomyces cerevisiae

  • Treerattrakool, Supattra (Institute of Molecular Biology and Genetics, Mahidol University, Salaya campus) ;
  • Eurwilaichitr, Lily (BIOTEC Training Center of Genetic Engineering and Biotechnology at Institute of Molecular Biology and Genetics, Mahidol University, Salaya campus) ;
  • Udomkit, Apinunt (Institute of Molecular Biology and Genetics, Mahidol University, Salaya campus) ;
  • Panyim, Sakol (Institute of Molecular Biology and Genetics, Mahidol University, Salaya campus)
  • Published : 2002.09.30

Abstract

The CHH/MIH/GIH peptide family of black tiger prawn (Paneaus monodon) is important in shrimp reproduction and growth enhancement. In this study, the cDNA that encodes the complete peptide that is related to the CHH/MIH/GIH family (so-called, Pem-CMG) in the eyestalk of P. monodon was successfully expressed in a methylotrophic yeast Pichia pastoris under the control of an alcohol oxidase promoter. In order to obtain the secreted Pem-CMG, a secretion signal of either the Saccharomyces cerevisiae $\alpha$-factor or Pem-CMG was employed. The results demonstrated that ${\alpha}Pem$-CMG, either with (${\alpha}2EACMG$) or without (${\alpha}CMG$) the Glu-Ala repeats, was secreted into the medium, while Pem-CMG with its own secretion signal failed to be secreted. The total protein amount that was secreted from the transformant that contained either ${\alpha}2EACMG$ or ${\alpha}CMG$ was approximately 60 mg/l and 150 mg/l, respectively. The N-terminus of the Pem-CMG peptide of both ${\alpha}2EACMG$ and ${\alpha}CMG$ was correctly processed. This produced the mature Pem-CMG peptide.

Keywords

References

  1. Bollag, D. M., Rozycki, M. D. and Edelistein, S. J. (1996) Concentrating Protein Solutions: Protein Methods, Wiley-Liss, New York.
  2. Brake, A. (1981) Secretion of heterologous protein directed by the yeast a-factor leader; in Yeast Genetic Engineering, Barr P. J., Brake, A. J. and Valenzuela, P. (eds.), pp. 269-280, Butterworth Publishers, Stoneham, Massachusetts.
  3. Briand, L., Perez, V., Huet, J. C., Danty. E., Masson. C. and Pemollet, J. C. (1999) Optimization of the production of a honeybee odorant-binding protein by Pichia pastoris. Protein Expr Purif. 15. 362-369. https://doi.org/10.1006/prep.1998.1027
  4. Cereghinno. J. and Cregg, J. (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24, 45-66. https://doi.org/10.1111/j.1574-6976.2000.tb00532.x
  5. Chooluck, S. (1999) Cloning and expression of a cDNA encoding growth-related peptide hormone of Penaeus monodon in Escherichia coli [M.Sc. Thesis in Molecular Genetics-Genetic Engineering] Mahidol University. Thailand
  6. Clare, J. J. Ronmanos. M. A., Rayment, F. B, Rowedder, J. E, Smith, M. A. and Payne. M. M. (1991) Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene 105. 205-212. https://doi.org/10.1016/0378-1119(91)90152-2
  7. Charmantier. G., Charmantier-Daures, M. and Van Herp, F. (1997). Hormonal regulation of growth and reproduction in crustaceans. in Endocrinology and Reproduction. Recent Advances in Marine Biotechnology, Vol. 1; Fingerman, M., Nagabhushanam. R. and Thomposon, M.-F (eds.), pp. 109-161. Science Publishers Inc, New Hampshire.
  8. Cregg, J. M, Vedvick, T. S. and Raschke, W. C. (1993) Recent advances in the expression of foreign genes in Pichia pastoris. BioTechnology 11. 905-910 https://doi.org/10.1038/nbt0893-905
  9. De Kleijn, D. P. V. and Van Herp, F. (1995) Molecular biology of neurohormone precursors in the eyestalks of crustacean. Comp. Biochem. Physiol. 112B, 573-579.
  10. Ferrari, E., Lodi. T., Sorbi, R. T., Tirindelli. R., Cavaggioni. A. and Spisni. A. (1997) Expression of a Iipocalin in Pichia pastoris: secretion. purification and binding activity of a recombinant mouse major urinary protein. FEBS Lett. 401, 73-77. https://doi.org/10.1016/S0014-5793(96)01436-6
  11. Gellissen. G. (2000) Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54. 741-750. https://doi.org/10.1007/s002530000464
  12. Goda, S, Takano, K, Yamagata, Y. and Yutani, K. (2000) Effect of extra N-terminal residues on the stability and folding of human lysozyme expressed in Pichia pastoris. Protein Eng. 13, 299-307. https://doi.org/10.1093/protein/13.4.299
  13. Morel, N. and Massculie, J. (1997) Expression and processing of vertebrate acetylcholinesterase in the yeast Pichia pastoris. Biochem. J. 328, 121-129 https://doi.org/10.1042/bj3280121
  14. Raemaekers. R. J. M., de Muro, L, Gatehouse, J. A. and Fordham-Skelton, A. P. (1999) Functional Phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in the PHA-E signal peptide. Eur. J. Biochem. 15. 362-369.
  15. Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes P., Doaa, C., Conneli, C. R., Heiner, C., Kent, S. B. H. and Hood, L. E. (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321, 674-679 https://doi.org/10.1038/321674a0
  16. Treerattrakool, S. (2001) Expression of Pem-CMG of Penaeus monodon in Pichia pastoris and analysis of its biological activity [M.Sc. Thesis in Molecular Genetics-Genetic Engineering] Mahidol University, Thailand
  17. Tschopp, J. F., Svelow, G., Kosson, R., Craik, W. and Grinna, L. (1987) High-level secretion of glycosylated invertase in the methylotrophic yeast. Pichia pastoris. BioTechnology 5, 1305-1308. https://doi.org/10.1038/nbt1287-1305
  18. Udomkit, A., Chooluck, S., Sonthayanon, B. and Panyim, S. (2000) Molecular cloning of a cDNA encoding a member of CHH/MIH/GIH family from Penaeus monodon and analysis of its gene structure. J. Exp. Mar. Biol. Ecol. 224, 145-156. https://doi.org/10.1016/S0022-0981(97)00188-3
  19. Van Nostrand, W. E., Schmaier. A. H., Neiditch, B. R., Siegel, R. S., Raschke, W. C., Sisodia. S. S. and Eagner, S. L. (1994) Expression purification and characterization of the kunitz type proteinase inhibitor domain of the amyloid $\beta$-protein precursor like protien-2. Biochem. Biophys. Acta 1209, 165-170. https://doi.org/10.1016/0167-4838(94)90180-5
  20. Vedvick. T., Buckholz, R. G., Engel, M., Uracan. M., Kinney, J., Provow, S., Siege!. R. S. and Thill, G. P. (1991) High-level secretion of biologically active apotinin from the yeast P. pastoris. J. lnd. Microbiol. 7. 197-201 https://doi.org/10.1007/BF01575883
  21. Wagner. S. L., Siegel, R. S., Vedvivk, T. G. S., Raschke. W. C. and Van Nostrand, W. E. (1992) High-level expression. Purification and characterization of the kunitz type protease inhibitor domain of protease nexin-2/amyloid b-protein precursor. Biochem. Biophys. Res. Commun. 186, 1138-1145 https://doi.org/10.1016/0006-291X(92)90865-I

Cited by

  1. Oxidative Modification of Neurofilament-L by Copper-catalyzed Reaction vol.36, pp.5, 2003, https://doi.org/10.5483/BMBRep.2003.36.5.488
  2. Molt-inhibiting hormone from the tropical land crab, Gecarcinus lateralis: Cloning, tissue expression, and expression of biologically active recombinant peptide in yeast vol.150, pp.3, 2007, https://doi.org/10.1016/j.ygcen.2006.09.013
  3. Restriction site free cloning (RSFC) plasmid family for seamless, sequence independent cloning in Pichia pastoris vol.14, pp.1, 2015, https://doi.org/10.1186/s12934-015-0293-6
  4. Natural and synthetic chiral isoforms of crustacean hyperglycemic hormone from the crayfish Astacus leptodactylus: Hyperglycemic activity and hemolymphatic clearance vol.34, pp.1, 2012, https://doi.org/10.1016/j.peptides.2012.01.019