Effect of Freezing/Thawing Cycles on Physical Properties of Beef

냉동, 해동의 반복이 쇠고기의 물성에 미치는 영향

Song, Mi-Sun;Lee, Seung-Ju
송미선;이승주

  • Published : 20020300

Abstract

Recrystallization or Ostwald ripening, by freezing/thawing cycles possibly occurring during frozen storage, leads to quality loss in frozen foods. Changes in physical properties of beef during 5 cycles of freezing/thawing were analyzed in terms of drip loss, water holding capacity, compressing force and exudate amount by compression, pH, color, cooking loss, total loss, shear force and microstructure. Drip loss increased with freezing/thawing cycles such that beef under 5 cycles showed twice larger drip loss than under 1 cycle. Cooking loss and total loss also increased. Water holding capacity decreased and shear force of cooked beef and compressing force and exudate amount by compression increased with the cycles. Red value of color decreased with the cycles, whereas yellow and blue values increased. On micrographs of cross section, larger holes, trace of ice crystals and more damaged tissue were observed from beef under more freezing/thawing cycles. The phenomena in the above physical properties may be due to enlargement of ice crystals in beef by freezing/thawing cycles.

식품이 동결/해동 반복되면 Ostawld ripening이 심화되어 품질이 변하게 된다. 쇠고기를 동결한 후 해동하는 과정을 5회 반복하면서 매 해동마다 쇠고기 품질 특성의 주요 인자인 drip 손실, cooking 손실, 총 손실, 전단력, 입자력과 압착손실량, 보수성, pH, 색도의 변화를 실험하였고 동결육 조직내 얼음결정의 분포와 크기 변화를 분석하기 위하여 미세구조를 관찰하였다. Drip 손실은 동결/해동의 횟수가 반복됨에 따라 증가하여 1회와 5회 반복한 쇠고기의 drip 손실은 약 2배 정도 차이가 났으며 가열 후 cooking 손실과 총 손실도 꾸준히 증가하였다. 반복 횟수가 많을수록 보수성은 감소하였으며 압착력과 압착에 의한 손실, 조리된 쇠고기의 전단력은 증가하여 육조직이 질겨지는 것을 알 수 있었다. 색도는 반복 횟수가 많을수록 red 값은 감소하였고, yellow 값과 blue 값은 각각 증가하였다. 또한 미세구조 사진으로부터 반복 횟수에 따라 세포조직내에 얼음결정의 자리로 보이는 공강 면적의 크기와 분포가 변하는 현상을 관찰할 수 있었다.

Keywords

References

  1. Aguilera, J.M. and D.W. Stanley. 1990. Microstructural Principles of Food Processing & Engineering. Elsevier Science Publishers, NY, USA
  2. Akamittath, J.G., C.J. Brekke, and E.G. Schanus. 1990. Lipid oxidation and color stability in restroctured meat systems during frozen storage. J. Food Sci. 55(6): 1513-1517 https://doi.org/10.1111/j.1365-2621.1990.tb03557.x
  3. Anon, M.C. and A. Calvelo. 1980. Freezing rate effects on the drip loss of frozen beef. Meat Sci. 4(1): 1-14 https://doi.org/10.1016/0309-1740(80)90018-2
  4. Bhattacharya, M., M.A. Hanna, and R.W. Mandigo. 1988. Effect of frozen storage conditions on yields, shear strength and color of gound beef patties. J. Food Sci. 53: 696-700 https://doi.org/10.1111/j.1365-2621.1988.tb08934.x
  5. Crigler, J.C. and L.E. Dawson. 1968. Cell disruption in broiler breast muscle related to freezing time. J. Food Sci. 33(3): 248-250 https://doi.org/10.1111/j.1365-2621.1968.tb01359.x
  6. Fennema, O. 1973. Low Temperature Preservation of Foods and Living Matter. Marcel Dekker, NY, USA
  7. Grau, Rand R Hamm. 1953. Eine einfache methosde zur bestimmung der wasserbindung im muskel. Naturwissenschaften 40: 29 https://doi.org/10.1007/BF00595734
  8. Hamm, R 1953. Wasserbingung des fleisches und ihrewirtschaftliche bedeutung. Deutsche Lebensmittel Rundschau 49: 153
  9. Hamm, R., P. Gottesmann und J. Kijowski. 1982. Einfrieren und Auftauen von fleisch: Einflusse auf muskelgewebe und tausaftbildung. Fleischwirtschaft 62(8): 983-992, 1006
  10. Hamm, R 1986. Functional properties of the myofibrillar system and their measurement. In: Muscle as Food. PJ. Bechtel (ed.). Academic Press, USA. pp135-199
  11. Hayat, M.A. 1986. Basic Techniques for Transmission Electron Microscopy. Academic Press, Inc., N.Y., USA Hanenian, R, G.S. Mittal, and W.R. Usbome. 1989. Effects of pre-chilling, freezing rate and storage time on beef patty quality. J. Food Sci. 54(3): 532-535 https://doi.org/10.1111/j.1365-2621.1989.tb04643.x
  12. Honikel, K.O., A. Hamid, C. Fischer, and R Hamm. 1981. Influence of postmortem changes in bovine muscle on the water holding capacity of beef. J. Food Sci. 46(1): 23-25 https://doi.org/10.1111/j.1365-2621.1981.tb14521.x
  13. Jalang, J.W., G.L. Saul, and R.A. Lawrie. 1987. Observations on muscle press juice from bovine and procine muscles. Meat Sci. 21(1): 73-76 https://doi.org/10.1016/0309-1740(87)90043-X
  14. Jul, M. 1984. The Quality of Frozen Foods. Academic Press, London, UK
  15. Ledward, D.A. 1970. Metmyoglobin formation in beef stored in carbon dioxide enriched and oxygen depleted atmospheres. J. Food Sci. 35(1): 33-37 https://doi.org/10.1111/j.1365-2621.1970.tb12362.x
  16. Levie, A. 1979. Meat Handbook. AV1 Publishing Co., Westport, USA
  17. Martino, M.N. and N.E. Zaritzky. 1988. Ice crystal size modifications during frozen beef storage. J. Food Sci. 53(6): 1631-1637 https://doi.org/10.1111/j.1365-2621.1988.tb07802.x
  18. Park, S., J. Novakofski, P.J. Bechtel, and F.K. McKeith. 1987. Palatability and texture of ground meat pattes made with varying amounts of pork and turkey. J. Food Sci. 52(6): 1490-1494 https://doi.org/10.1111/j.1365-2621.1987.tb05861.x
  19. Verma, M.M., A.D. Alarcon-Rojo, D.A. Ledward, and R.A. Lawrie. 1985. Effect of frozen storage of minced meats on the quality of sausages prepared from them. Meat Sci. 12(3): 125-129
  20. Wagner, J.R. and M.C. Anon. 1985. Effect of freezing rate on the denaturation of myofibrillar proteins. J. Food Technolo 20(6): 735-744
  21. Winger, R.J. and O. Fennema. 1976. Tenderness and water holding properties of beef muscle as influenced by freezing and subsequent storage at -3°C or -15°C. J. Food Sci. 41(6): 1433-1438 https://doi.org/10.1111/j.1365-2621.1976.tb01189.x