The Effect of Nitric Oxide on Apoptosis in Human Luteinized Granulosa Cells

Nitric Oxide가 인간 황체화 과립막세포의 아포프토시스에 미치는 영향

Jee, Byung-Chul;Moon, Shin-Yong
지병철;문신용

  • Published : 20020500

Abstract

Objective : To investigate the effect of nitric oxide on the apoptosis of human luteinized granulosa cells. Methods : Granulosa cell suspensions were incubated for 48 hours after adding nitric oxide donor (S-nitroso-N-acetyl-penicillamine, SNAP) and nitric oxide synthase inhibitor (nitro-L-arginine methyl ester, L-NAME) at different concentrations. Apoptosis was examined using a terminal deoxynucleotide transferasemediated dUTP-biotin nick end labeling method, and immunocytochemical staining was performed for six apoptosis-related proteins. Results : Apoptotic rates were significantly lower in cells incubated in SNAP 0.5 mM, but higher in L-NAME 0.5, 1.0, and 5.0 mM. SNAP 0.5 mM lowered the expressions of Fas and p53 in granulosa cells, but Bcl-2 expression was increased, and Fas ligand or Bax remained unchanged. In L-NAME 0.5 and 5.0 mM, the expressions of p53 and Bax were increased, and Bcl-2 was unchanged. Fas/Fas ligands were also activated especially in L-NAME 5.0 mM. Conclusion : Nitric oxide may inhibit apoptosis via decreased Fas and p53, and increased Bcl-2 expression in human luteinized granulosa cells.

목적 : 인간 황체화 과립막세포를 대상으로 nitric oxide (NO)가 아포프토시스에 관련되는지를 알아보고자 하였다. 연구 방법 : 체외수정시술을 시행하는 70명의 환자에서 난포액을 원심분리하여 황체화 과립막세포를 얻고 NO 생성제인 SNAP 및 nitric oxide synthase 저해제인 L-NAME을 농도별로 첨가하고 48시간 배양하였다. 아포프토시스의 정도는 TUNEL 염색법을 이용하였으며 아포프토시스 관련 단백인 Fas, Fas ligand, TNFR1, Bcl-2/Bax, p53의 발현은 면역세포화학염색법을 이용하여 관찰하였다. 결과 : 과립막세포의 아포프토시스율은 SNAP 0.5 mM 처리군에서 대조군에 비하여 유의하게 낮은 반면, L-NAME 0.5 mM, 1.0 mM, 5.0 mM 처리군에서 대조군에 비하여 유의하게 높게 나타났다. SNAP 0.5 mM 처리군에서 Fas 단백과 p53의 발현은 대조군에 비하여 낮았으나 Bcl-2 발현은 높았고 Fas ligand와 Bax의 변화는 없었다. L-NAME 0.5 mM, 5.0 mM 처리군에서는 p53과 Bax의 발현이 대조군에 비하여 높았던 반면 Bcl-2의 변화는 없었다. Fas와 Fas ligand의 발현은 특히 L-NAME 5.0 mM 처리군에서만 유의하게 높게 나타났다. 결론 : 인간 황체화 과립막세포에서 NO는 Fas 및 p53의 감소와 더불어 Bcl-2의 증가를 통하여 아포프토시스를 억제한다고 사료된다.

Keywords

References

  1. Rosselli M, Keller PJ, Dubey RK. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 1998; 4: 3-24. https://doi.org/10.1093/humupd/4.1.3
  2. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524-6. https://doi.org/10.1038/327524a0
  3. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endotheliumderived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84: 9265-9. https://doi.org/10.1073/pnas.84.24.9265
  4. Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 1995; 57: 707-36. https://doi.org/10.1146/annurev.ph.57.030195.003423
  5. Snyder SH. Nitric oxide. No endothelial NO. Nature 1995; 377: 196-7. https://doi.org/10.1038/377196a0
  6. Nussler AK, Billiar TR. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 1993; 54: 171-8.
  7. Morris SM Jr, Billiar TR. New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol 1994; 266: E829-39.
  8. Nathan C, Xie QW. Regulation of biosynthesis of nitric oxide. J Biol Chem 1994; 269: 13725-8.
  9. Bogle RG, Baydoun AR, Pearson JD, Moncada S, Mann GE. L-arginine transport is increased in macrophages generating nitric oxide. Biochem J 1992; 284: 15-8. https://doi.org/10.1042/bj2840015
  10. Inoue Y, Bode BP, Beck DJ, Li AP, Bland KI, Souba WW. Arginine transport in human liver. Characterization and effects of nitric oxide synthase inhibitors. Ann Surg 1993; 218: 350-63. https://doi.org/10.1097/00000658-199309000-00014
  11. Rogers NE, Ignarro LJ. Constitutive nitric oxide synthase from cerebellum is reversibly inhibited by nitric oxide formed from L-arginine. Biochem Biophys Res Commun 1992; 189: 242-9. https://doi.org/10.1016/0006-291X(92)91550-A
  12. Rosselli M, Imthurm B, Macas E, Keller PJ, Dubey RK. Circulating nitrite/nitrate levels increase with follicular development: indirect evidence for estradiol mediated NO release. Biochem Biophys Res Commun 1994; 202: 1543-52. https://doi.org/10.1006/bbrc.1994.2107
  13. Anteby EY, Hurwitz A, Korach O, Revel A, Simon A, Finci-Yeheskel Z, et al. Human follicular nitric oxide pathway: relationship to follicular size, oestradiol concentrations and ovarian blood flow. Hum Reprod 1996; 11: 1947-51. https://doi.org/10.1093/oxfordjournals.humrep.a019522
  14. Zackrisson U, Mikuni M, Wallin A, Delbro D, Hedin L, Brannstrom M. Cell-specific localization of nitric oxide synthases (NOS) in the rat ovary during follicular development, ovulation and luteal formation. Hum Reprod 1996; 11: 2667-73. https://doi.org/10.1093/oxfordjournals.humrep.a019189
  15. Shukovski L, Tsafriri A. The involvement of nitric oxide in the ovulatory process in the rat. Endocrinology 1994; 135: 2287-90. https://doi.org/10.1210/en.135.5.2287
  16. Bonello N, McKie K, Jasper M, Andrew L, Ross N, Braybon E, et al. Inhibition of nitric oxide: effects on interleukin-1 beta-enhanced ovulation rate, steroid hormones, and ovarian leukocyte distribution at ovulation in the rat. Biol Reprod 1996; 54: 436-45. https://doi.org/10.1095/biolreprod54.2.436
  17. Hesla JS, Preutthipan S, Maguire MP, Chang TS, Wallach EE, Dharmarajan AM. Nitric oxide modulates human chorionic gonadotropininduced ovulation in the rabbit. Fertil Steril 1997; 67: 548-52. https://doi.org/10.1016/S0015-0282(97)80084-2
  18. Van Voorhis BJ, Dunn MS, Snyder GD, Weiner CP. Nitric oxide: an autocrine regulator of human granulosa-luteal cell steroidogenesis. Endocrinology 1994; 135: 1799-806. https://doi.org/10.1210/en.135.5.1799
  19. Vega M, Johnson MC, Diaz HA, Urrutia LR, Troncoso JL, Devoto L. Regulation of human luteal steroidogenesis in vitro by nitric oxide. Endocrine 1998; 8: 185-91. https://doi.org/10.1385/ENDO:8:2:185
  20. Chun SY, Eisenhauer KM, Kubo M, Hsueh AJ. Interleukin-1 $\beta$ suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology 1995; 136: 3120-7. https://doi.org/10.1210/en.136.7.3120
  21. Basini G, Baratta M, Ponderato N, Bussolati S, Tamanini C. Is nitric oxide an autocrine modulator of bovine granulosa cell function? Reprod Fertil Dev 1998; 10: 471-8.
  22. Matsumi H, Koji T, Yano T, Yano N, Tsutsumi O, Momoeda M, et al. Evidence for an inverse relationship between apoptosis and inducible nitric oxide synthase expression in rat granulosa cells: a possible role of nitric oxide in ovarian follicle atresia. Endocr J 1998; 45: 745-51. https://doi.org/10.1507/endocrj.45.745
  23. Quirk SM, Cowan RG, Joshi SG, Henrikson KP. Fas antigen-mediated apoptosis in human granulosa/luteal cells. Biol Reprod 1995; 52: 279-87. https://doi.org/10.1095/biolreprod52.2.279
  24. Akahori M, Yamada S, Takeyama N, Tanaka T. Nitric oxide ameliorates actinomycin D/endotoxin-induced apoptotic liver failure in mice. J Surg Res 1999; 85: 286-93. https://doi.org/10.1006/jsre.1999.5621
  25. Furuke K, Burd PR, Horvath-Arcidiacono JA, Hori K, Mostowski H, Bloom ET. Human NK cells express endothelial nitric oxide synthase, and nitric oxide protects them from activation-induced cell death by regulating expression of TNF-alpha. J Immunol 1999; 163: 1473-80.
  26. Mannick JB, Miao XQ, Stamler JS. Nitric oxide inhibits Fas-induced apoptosis. J Biol Chem 1997; 272: 24125-8. https://doi.org/10.1074/jbc.272.39.24125
  27. Hebestreit H, Dibbert B, Balatti I, Braun D, Schapowal A, Blaser K, et al. Disruption of fas receptor signaling by nitric oxide in eosinophils. J Exp Med 1998; 187: 415-25. https://doi.org/10.1084/jem.187.3.415
  28. Sciorati C, Rovere P, Ferrarini M, Heltai S, Manfredi AA, Clementi E. Autocrine nitric oxide modulates CD95-induced apoptosis in gammadelta T lymphocytes. J Biol Chem 1997; 272: 23211-5. https://doi.org/10.1074/jbc.272.37.23211
  29. Suschek CV, Krischel V, Bruch-Gerharz D, Berendji D, Krutmann J, Kroncke KD, et al. Nitric oxide fully protects against UVA-induced apoptosis in tight correlation with Bcl-2 up-regulation. J Biol Chem 1999; 274: 6130-7. https://doi.org/10.1074/jbc.274.10.6130
  30. Brune B, von Knethen A, Sandau KB. Nitric oxide: an effector of apoptosis. Cell Death Differ 1999; 6: 969-75. https://doi.org/10.1038/sj.cdd.4400582
  31. Kolb JP. Mechanisms involved in the pro- and anti-apoptotic role of NO in human leukemia. Leukemia 2000; 14: 1685-94. https://doi.org/10.1038/sj.leu.2401896
  32. Ceneviva GD, Tzeng E, Hoyt DG, Yee E, Gallagher A, Engelhardt JF, et al. Nitric oxide inhibits lipopolysaccharide-induced apoptosis in pulmonary artery endothelial cells. Am J Physiol 1998; 275: L717-28.
  33. Song W, Lu X, Feng Q. Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovasc Res 2000; 45: 595-602. https://doi.org/10.1016/S0008-6363(99)00395-8
  34. Matsubara H, Ikuta K, Ozaki Y, Suzuki Y, Suzuki N, Sato T, et al. Gonadotropins and cytokines affect luteal function through control of apoptosis in human luteinized granulosa cells. J Clin Endocrinol Metab 2000; 85: 1620-6. https://doi.org/10.1210/jc.85.4.1620
  35. Makrigiannakis A, Coukos G, Christofidou-Solomidou M, Montas S, Coutifaris C. Progesterone is an autocrine/paracrine regulator of human granulosa cell survival in vitro. Ann N Y Acad Sci 2000; 900: 16-25. https://doi.org/10.1111/j.1749-6632.2000.tb06212.x
  36. Chun SY, Billig H, Tilly JL, Furuta I, Tsafriri A, Hsueh AJ. Gonadotropin suppression of apoptosis in cultured preovulatory follicles: mediatory role of endogenous insulin-like growth factor I. Endocrinology 1994; 135: 1845-53. https://doi.org/10.1210/en.135.5.1845
  37. Luciano AM, Pappalardo A, Ray C, Peluso JJ. Epidermal growth factor inhibits large granulosa cell apoptosis by stimulating progesterone synthesis and regulating the distribution of intracellular free calcium. Biol Reprod 1994; 51: 646-54. https://doi.org/10.1095/biolreprod51.4.646