Changes in Respiration Rates, Cell Wall Components and Their Hydrolase Activities during the Ripening of 'Whangkeumbae' Pear Fruit

'황금배' 과실의 성숙에 따른 호흡량, 세포벽 성분 및 세포벽 분해효소의 활성 변화

Yoo, Wook-Jae;Kim, Dae-Hyun;Lee, Dong-Hoon;Byun, Jae-Kyun
유욱재;김대현;이동훈;변재균

  • Published : 20020000

Abstract

This study was carried out to investigate the ripening characteristics of ‘Whangkeumbae’ pear fruits. During fruit ripening, flesh weight and soluble solids increased, flesh firmness decreased, but acidity showed no significant changes. Respiration rates were little changed. Ethylene was not evolved until predicted harvest date (Sept. 7). However, extremely small amounts were detected 1 or 2 weeks after harvest. The changes of respiration rates in fruit treated with ethylene (500 mg·L-1 for 48 hours) after harvest at ripening stages were not different from those of untreated fruits. Therefore, respiration pattern of ‘Whangkeumbae’ pear fruit can be classified as non-climacteric fruit. During fruit ripening, a little changes in uronic acid of cell wall materials and their various fractionations except 0.05M $Na_{2}CO_{3}$ fraction were observed. However, total sugars in cell wall materials and their CDTA, $Na_{2}CO_{3}$ and 4% KOH fraction were decreased significantly. These data indicate that a lot of degradation of non-cellulosic neutral polysaccharides to sugars begin first, and then small amounts of polyuronides degradation to uronic acid follows during fruit ripening. Activities of a- and $\beta$-galactosidase, $\beta$-xylosidase and $\beta$-arabinosidase were greatly increased in proportion to the fruit ripening. Therefore, those cell wall hydrolases seem to be associated with ‘Whangkeumbae’ pear fruit ripining.

이 연구는 ‘황금배’ 과실의 성숙특성을 밝히기 위하여 수행되었다. 과실 성숙동안 과중과 가용성 고형물 함량은 증가하였으며, 경도는 감소하였고, 산함량은 큰 차이를 보이지 않았다. 호흡량은 큰 변화가 없었다. 에틸렌은 관행수확일(9월 7일)까지는 발생하지 않았으나 그 1 및 2주후에는 극미량이 검출되었다. 성숙기에 도달된 과실들은 수확하여 500mg·L-1의 농도로 48시간 동안 에틸렌을 처리한 과실과 에틸렌 무처리 과실의 호흡량 변화에는 차이가 없었다. 따라서 ‘황금배’ 과실의 호흡 양상은 비클라이막테릭으로 분류될 수 있다. 과실 성숙동안 세포벽 물질과 0.05M Na2CO3 분획을 제외한 그들의 분획중에 존재하는 uronic acid 함량은 큰 변화가 없었다. 그러나 세포벽 물질과 그들의 CDTA, 0.05M Na2CO3 및 4% KOH 분획들에 함유된 total sugars는 현저히 감소하였다. 이 결과들은 과실이 성숙함에 따라 먼저 다량의 비섬유성 중성 탄수화물이 당으로 분해되기 시작하고 후에 보다 적은 양의 polyuronides가 uronic acid로 분해됨을 보여주고 있다. a- 및 b-galactosidase, b-glucosidase, b-xylosidase, b-arabinosedase의 활성은 과실의 성숙의 진행과 비례하여 증가하였다. 따라서 이들 세포벽 분해효소들은 ‘황금배’ 과실의 성숙과 밀접하게 관련되어 있는 것으로 생각되었다.

Keywords

References

  1. Ben-Arie, R., L. Sonego, and C. Frenkel. 1979. Changes in pectic substances in ripening pears. J. Amer. Soc. Hort. Sci. 104:500-505
  2. Bitter, T. and H.M. Muir. 1962. A modified uronic acid carbazole reac-tion. Anal. Biochem. 4:330-334 https://doi.org/10.1016/0003-2697(62)90095-7
  3. Chang, K.H., D.H. Lee, I.S. Kim, I.K. Kang, and J.K. Byun. 1999a. Changes in the cell wall components during the softening in peach fruits. J. Kor. Soc. Hort. Sci. 40:355-358
  4. Chang, K.H., D.H. Lee, and J.K. Byun. 1999b. Changes in activities of cell wall hydrolases during softining in peach fruits. J. Kor. Soc. Hort. Sci. 40:359-362
  5. Cutillas-Iturralde, A., I. Zarra, and E.P. Lorences. 1993. Metabolism of cell wall polysaccharides from persimmon fruit. Pectin solubilization during fruit ripening occurs in apparent absence of polygalacturonase activity. Physiol. Plant. 89:369-375 https://doi.org/10.1111/j.1399-3054.1993.tb00168.x
  6. Downs, C.G., C.J. Brady, J. Campbell, and W.B. McGlasson. 1991. Normal ripening cultivars of Pyrus serotina are either climacteric or non-climacteric. Scientia Hort. 48:213-221 https://doi.org/10.1016/0304-4238(91)90129-M
  7. Dubois. M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356 https://doi.org/10.1021/ac60111a017
  8. Gross, K.C. 1982. A rapid and sensitive method for assaying polygalacturonase using 2-cyanoacetamide. HortScience 17:933-934
  9. Kang, I.K., K.H. Chang, and J.K. Byun. 1998a. Changes in cell wall components during ripening and softening in persimmon fruits. J. Kor. Soc. Hort. Sci. 39:46-50
  10. Kang, I.K., K.H. Chang, and J.K. Byun. 1998b. Solubilization and depolymerization of pectic and neutral sugar polymers during ripening and softening in persimmon fruits. J. Kor. Soc. Hort. Sci. 39: 51-54
  11. Kang, I.K., K.H. Chang, and J.K. Byun. 1998c. Changes in activities of cell wall hydrolases during ripening and softening in persimmon fruits. J. Kor. Soc. Hort. Sci. 39:55-59
  12. Kang, I.K., H.Y. Kim, H.J. Kweon, and J.K. Byun. 1999. Changes in ethylene production, respiration rates and cell wall hydrolase activities during storages of apples. J. Kor. Soc. Hort. Sci. 40:451-454
  13. Kitamura, T., T. Iwata, T. Fukusima, Y. Furukawa, and T. Ishiguro. 1981. Studies of the maturation-physiology and storage of fruits and vegetables. II. Respiration and ethylene production in reference to species and cultivars of pear fruit. J. Japan. Soc. Hort. Sci. 49:608-616 https://doi.org/10.2503/jjshs.49.608
  14. Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  15. Moshrefi, M. and B.S. Luh. 1984. Purification, characterization of two tomato polygalacturonase isoenzymes. J. Food Biochem. 8:39-54 https://doi.org/10.1111/j.1745-4514.1984.tb00312.x
  16. Pressey, R. 1983. beta-Galactosidase in ripening tomatoes. Plant Physiol. 71:132-135 https://doi.org/10.1104/pp.71.1.132
  17. Rose, J.K.C., K.A. Hadafield, J.M. Labavitch, and A.B. Bennett. 1998. Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiol. 177:345-361
  18. Received for publication 15 October 2001. Accepted for publication 31 December 2001. This research was supported by the Yeungnam University Research Grants in 2000