DOI QR코드

DOI QR Code

Cloning of the Large Subunit of Replication Protein A (RPA) from Yeast Saccharomyces cerevisiae and Its DNA Binding Activity through Redox Potential

  • Jeong, Haeng-Soon (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Jeong, In-Chel (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Andre (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kang, Shin-Won (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kang, Ho-Sung (Department of Molecular Biology, Pusan National University) ;
  • Kim, Yung-Jin (Department of Molecular Biology, Pusan National University) ;
  • Lee, Suk-Hee (Department of Biochemistry and Molecular Biology, Indiana University School of Medicine) ;
  • Park, Jang-Su (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Published : 2002.03.31

Abstract

Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA 70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.

Keywords

References

  1. Abate, C., Patel, L., Rauscher Ill, F. J. and Curran, T. (1990) Redox regulation of Fos and lun DNA-binding in vitro. Science 249, 1157-1161. https://doi.org/10.1126/science.2118682
  2. Carty, M. P., Zemik-Kobak, M., McGrath, S. and Dixon, K. (1994) UV-light induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein. EMBO J. 13, 2114-2123.
  3. Casadevall, M. and Sarkar, B. (1998) Effects of redox conditions on the DNA-binding efficiency of the retinoic acid receptor zinc-finger. J. lnorg. Biochem. 71, 147-152. https://doi.org/10.1016/S0162-0134(98)10046-6
  4. Clarke, N. D. and Berg, J. M. (1998) Zinc fingers in Caenorhabditis elegans: Finding amities and probing pathways. Science 282, 2018-2022. https://doi.org/10.1126/science.282.5396.2018
  5. Fairman, M. P. and Stillman, B. (1988) Cellular factors required for multiple stage of SV40 DNA replication in vitro. EMBO J. 7, 1211-1218.
  6. Gowen, L. C., Avrutskaya, A. X, Latour, A. M., Koller, B. H. and Leadon, S. A. (1998) BRCA1 regulated for transcription-coupled repair of oxidative DNA damage. Science 281, 1009-1012. https://doi.org/10.1126/science.281.5379.1009
  7. Hutchison, K. A., Matic, G., Meshinchi, S., Bresnick, E. H. and Pratt, W. B. (1991) Redox manipUlation of DNA binding and BuGR epitope reactivity of the glucocorticoid receptor. J. Biol. Chem. 266, 10505-10509.
  8. Jayaraman, L., Murthy, K. G. K., Zhu, C., Curran, T., Xanthoudakis, S. and Curran, T. (1997) Identification of redox/ repair Ref-I as a potent activator of p53. Genes & Dev. 11, 558-570. https://doi.org/10.1101/gad.11.5.558
  9. Kosower, N. S. and Kosower, E. M. (1987) Sulfinic acids from disulfides: L-[$^{35}S$]cysteinesulfinic acid. Methods Enzymol. 143, 264-270. https://doi.org/10.1016/0076-6879(87)43050-4
  10. Luisi, B. F., Xu, W. X, Otwinowski, Z., Freedman, L. P., Yamamoto, K. R. and Sigler, P. B. (1991) Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497-505. https://doi.org/10.1038/352497a0
  11. Nakshatri, H., Bhat-Nakshatri, P. and Currie, A. (1996) Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J. Biol. Chem 271, 28784-28791. https://doi.org/10.1074/jbc.271.46.28784
  12. Park., J.-S., Park, S.-J. Peng, X. Wang, M., Yu, M.-A. and Lee, S.-H. (l999a) Involvement of DNA-dependent protein kinase in UV-induced replication arrest. J. Biol. Chem. 274, 32520-32527. https://doi.org/10.1074/jbc.274.45.32520
  13. Park, J.-S., Wang, M., Park, S.-J. and Lee, S.-H. (1999b) Zinc finger of replication protein A. a non-DNA binding element, regulates its DNA binding activity through redox. J. Biol. Chem. 274, 29075-29079. https://doi.org/10.1074/jbc.274.41.29075
  14. Sherman, F., Fink, G. and Lawrence, C. (1974) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, p. 89.
  15. Sibenaller, Z. A., Sorensen, B. R. and Wold, M. S. (1998) The 32- and 14-kilodalton subunits of replication protein A are responsible for species-specific interactions with single-stranded DNA. Biochem. 37, 12496-12506. https://doi.org/10.1021/bi981110+
  16. Tell, N., Scaloni, A., Pellizzari, L., Formisano, S., Pucillo, C. and Damante, G. (1998) Redox potential controls the structure and DNA binding activity of the paired domain. J. Biol. Chem. 273, 25062-25072. https://doi.org/10.1074/jbc.273.39.25062
  17. Wobbe, C. R. L., Weissbach, L., Borowiec, J. A., Dean, F. B, Murakami, Y., Bullock, P. and Hurwitz, J. (1987) Replication of simian virus 40 origin-containing DNA in vitro with purified protein. Proc. Natl. Acad. Sci., USA 84, 1834-1838. https://doi.org/10.1073/pnas.84.7.1834
  18. Wold, M. S. and Kelly, T. J. (1988) Purification and characterization of replication protein A. a cellular protein required for in vitro replication of simian virus 40 DNA. Proc. Natl. Acad. Sci. USA 85, 2523-2527. https://doi.org/10.1073/pnas.85.8.2523
  19. Wold, M. S. (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61-92. https://doi.org/10.1146/annurev.biochem.66.1.61
  20. Wu, X., Bishopric, N. H., Discher, D. J., Murphy, B. J. and Webster, K. A. (1996) Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol. Cell. Biol. 16, 1035-1046. https://doi.org/10.1128/MCB.16.3.1035
  21. Xanthoudakis, S. and Curran, T. (1992) Identification and characterization of Ref-1, a nuclear protein that facilitates AP-I DNA-binding activity. EMBO J. 11, 653-665.
  22. You, J.-S., Wang, M. and Lee, S.-H. (2000) Functional characterization of zinc-finger motif in redox regulation of RPA-ssDNA interaction. Biochem. 39, 12953-12958. https://doi.org/10.1021/bi001206f

Cited by

  1. Cloning and characterization of neoplasia-related genes in flat oyster Ostrea edulis vol.23, 2014, https://doi.org/10.1016/j.meegid.2014.02.004
  2. Redox Control of Protein–DNA Interactions: From Molecular Mechanisms to Significance in Signal Transduction, Gene Expression, and DNA Replication vol.13, pp.9, 2010, https://doi.org/10.1089/ars.2009.3029
  3. Redox-dependent formation of disulfide bonds in human replication protein A vol.21, pp.16, 2007, https://doi.org/10.1002/rcm.3144
  4. Species-specific variation of RPA-interacting protein (RIP) splice isoforms vol.42, pp.1, 2009, https://doi.org/10.5483/BMBRep.2009.42.1.022