Hyperhomocysteinemia as a Risk Factor for Coronary Artery Disease

혈장 호모시스테인이 관상동맥질환에 미치는 영향

Oh, Gwi-Yeung;Lee, Gyeong-In;Hong, Ki-Sook;Chung, Ick-Mo
오귀영;이경인;홍기숙;정익모

  • Published : 20020000

Abstract

Background : Hyperhomocysteinemia is considered as a risk factor for coronary artery disease(CAD). In this study, we investigated the relationship between plasma homocysteine concentration and coronary artery disease. Methods : We measured plasma homocysteine concentration by fluorescent polarization immunoassay (IMx, Abbott) in 58 healthy controls (39-72 years) and in 37 patients (42-84 years) who were diagnosed with stable angina (11), unstable angina (14), acute myocardial infarction (8), old myocardial infarction (1) and silent myocardial ischemia (3). Results : The risk of CAD was independently associated with old age, decreased HDL cholesterol and hyperhomocysteinemia ($\geq$12.8 $\mu$mol/L) and adjusted odds ratios were 2.8, 3.4, and 6.0, respectively. The risk for CAD in the upper two homocysteine quartiles ($\geq$10.8 $\mu$mol/L & 8.1-10.7 $\mu$mol/L) was 11.1 (95% CI, 2.5-49.4) times and 6.3 (95% CI, 1.4-27.7) times higher than in the lowest quartile (<6.9 $\mu$mol/L) (P=0.002 & 0.014, respectively). The mean plasma homocysteine values (M${\pm}$SD) were higher in CAD patients (11.8${\pm}$7.4 $\mu$mol/L) than in the control group (8.0${\pm}$2.4 $\mu$mol/L) (P=0.0006). In the control group, the mean plasma homocysteine concentration in men was significantly higher than in women (9.1 vs. 7.2 $\mu$mol/L, P=0.002). Age and logarithmically transformed plasma homocysteine levels exhibited significant positive correlation in controls (r=0.43, P=0.001), but no significant correlation in CAD patients (r=-0.024, P=0.9). Plasma homocysteine levels were significantly higher in the elderly, male subjects and smokers in the univariate analysis. Conclusions : Hyperhomocysteinemia is one of the independent risk factors for CAD.

배경 : 고호모시스테인 혈증은 관상동맥질환의 위험인자이다. 본 연구에서 저자는 혈장 호모시스테인 농도와 관상동맥질환과의 상관관계를 분석하고자 하였다. 방법 : 연구방법은 58명의 정상대조군(39-72세)과 37명의 환자들(42-84세)에서 형광편광 면역법(IMx, Abbott)으로 혈장 호모시스테인 농도를 측정하였으며 환자들은 질환별로 안정 협심증 11명, 불안정 협심증 14명, 급성심근경색증 8명과 진구성 심근경색증 1명, 기타 허혈성 심질환 3명이었다. 결과 : 고령, 고밀도 지단백의 감소와 호모시스테인 증가가 각각 2.8배, 3.4배와 6.0배 만큼 높은 위험률을 보이는 관상동맥질환의 독립적인 위험인자로 평가되었다. 혈장 호모시스테인 사분위수중 가장 높은 농도를 보이는 두군($\geq$10.8 $\mu$mol/L & 8.1-10.7 $\mu$mol/L)은 가장 낮은 호모시스테인 농도를 보이는 군(<6.9 $\mu$mol/L)에 비해 각각 11.1 (95% CI, 2.5-49.4)배와 6.3 (95% CI, 1.4-27.7)배만큼 관상동맥질환의 위험률이 높았다(P=0.002 & P=0.014). 호모시스테인 평균농도(M${\pm}$SD)는 관상동맥질환군(11.8${\pm}$7.4 $\mu$mol/L)에서 정상대조군(8.0${\pm}$2.4 $\mu$mol/L)보다 유의하게 높았다(P=0.0006). 정상대조군에서 평균 호모시스테인 농도는 남자에서 여자보다 높았다(9.1 vs 7.2 $\mu$mol/L, P=0.002). 정상대조군에서는 나이와 혈장 호모시스테인 농도간에 양의 상관관계 (r=0.43, P=0.001)가 있었으나 관상동맥질환군에서는 통계적으로 유의한 상관관계를 보이지 않았다(r=-0.024, P=0.9). 혈장 호모시스테인 농도는 연령, 성별 및 흡연에 의해 영향받는 것으로 분석되었으며, 다변량분석상 성별이 독립적으로 혈장 호모시스테인 농도를 결정하는 인자인 것으로 분석되었다. 결론 : 혈장 호모시스테인 농도의 증가는 관상동맥질환의 독립적인 위험인자중의 하나로 사료된다.

Keywords

References

  1. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969; 56:111-28
  2. Stampfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D, et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 1992; 268: 877-81 https://doi.org/10.1001/jama.268.7.877
  3. Mayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol 1996; 27: 517-27 https://doi.org/10.1016/0735-1097(95)00508-0
  4. Welch GN and Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med 1998;338:1042-50 https://doi.org/10.1056/NEJM199804093381507
  5. Mudd SH, Finkelstein JD, Irreverre F, Laster L. Homocysteinuria; an enzyme defect. Science 1964;143:1443-5
  6. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995;10:111-3 https://doi.org/10.1038/ng0595-111
  7. Kang SS, Wong PW, Malinow MR. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr 1992;12:279-98 https://doi.org/10.1146/annurev.nu.12.070192.001431
  8. Ueland PM and Refsum H. Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy. J Lab Clin Med 1989;114:473-501
  9. Ma J, Stampfer MJ, Hennekens CH, Frosst P, Selhub J, Horsford J, et al. Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in US physicians. Circulation 1996;94:2410-6 https://doi.org/10.1161/01.CIR.94.10.2410
  10. van Bockxmeer FM, Mamotte CD, Vasikaran SD, Taylor RR. Methylenetetrahydrofolate reductase gene and coronary artery disease. Circulation 1997;95:21-3 https://doi.org/10.1161/01.CIR.95.1.21
  11. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995;274:1049-57 https://doi.org/10.1001/jama.274.13.1049
  12. Stampfer MJ and Malinow MR. Can lowering homocysteine levels reduce cardiovascular risk? N Engl J Med 1995;332:328-9
  13. The Expert Panel. Summary of the second report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. JAMA 1993;269:3015-23 https://doi.org/10.1001/jama.269.23.3015
  14. Jacobsen DW. Homocysteine and vitamins in cardiovascular disease. Clin Chem 1998; 44: 1833-43
  15. Tsai MY. Laboratory assessment of mild hyperhomocysteinemia as an independent risk factor for occlusive vascular diseases. Clin Chem 1996;42:492-3
  16. Jacobsen DW, Gatautis VJ, Green R, Robinson K, Savon SR, Secic M, et al. Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects. Clin Chem 1994; 40: 873-81
  17. Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH. Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 1993;39:1764-79
  18. Chao CL, Tsai HH, Lee CM, Hsu SM, Kao JT, Chien KL, et al. The graded effect of hyperhomocysteinemia on the severity and extent of coronary atherosclerosis. Atherosclerosis 1999;147:379-86 https://doi.org/10.1016/S0021-9150(99)00208-7
  19. Kang SS, Passen EL, Ruggie N, Wong PW, Sora H. Thermolabile defect of methylenetetrahydrofolate reductase in coronary artery disease. Circulation 1993;88:1463-9 https://doi.org/10.1161/01.CIR.88.4.1463
  20. Wilcken DE, Wang XL, Sim AS, McCredie RM. Distribution in healthy and coronary populations of the methylenetetrahydrofolate reductase (MTHFR) C667T mutation. Arterioscler Thromb Vasc Biol 1996;16:878-82 https://doi.org/10.1161/01.ATV.16.7.878
  21. Glueck CJ, Shaw P, Lang JE, Tracy T, Sieve-Smith L, Wang Y. Evidence that homocysteine is an independent risk factor for atherosclerosis in hyperlipidemic patients. Am J Cardiol 1995;75:132-6 https://doi.org/10.1016/S0002-9149(00)80061-2
  22. Verhoef P, Kok FJ, Kruyssen DA, Schouten EG, Witteman JC, Grobbee DE, et al. Plasma total homocysteine, B vitamins, and risk of coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1997;17:989-95 https://doi.org/10.1161/01.ATV.17.5.989
  23. 홍기숙 및 정익모. 혈장호모시스테인의 정상치 산정 및 임상적 유용성. 대한임상병리학회지 2000;20:7-12
  24. Kluijtmans LA, van den Heuvel LP, Boers GH, Frossat P, Stevens EM, van Oost BA, et al. Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet 1996;58:35-41
  25. Loehrer FM, Angst CP, Haefeli WE, Jordan PP, Ritz R, Fowler B. Low whole-blood S-adenosylmethionine and correlation between 5-methyltetrahydrofolate and homocysteine in coronary artery disease. Arterioscler Thromb Vasc Biol 1996;16:727-33 https://doi.org/10.1161/01.ATV.16.6.727
  26. Malinow MR, Nieto FJ, Szklo M, Chambless LE, Bond G. Carotid artery intimal-medial wall thickening and plasma homocyst(e)ine in asymptomatic adults. The Atherosclerosis Risk in Communities Study. Circulation 1993;87:1107-13 https://doi.org/10.1161/01.CIR.87.4.1107
  27. Nordstrom M and Kjellstrom T. Age dependency of cystathionine beta-synthase activity in human fibroblasts in homocyst(e)inemia and atherosclerotic vascular disease. Atherosclerosis 1992;94:213-21 https://doi.org/10.1016/0021-9150(92)90246-D
  28. Wilcken DE and Gupta VJ. Sulphr containing amino acids in chronic renal failure with particular reference to homocysteine and cysteine-homo cysteine mixed disulphide. Eur J Clin invest 1979;9:301-7 https://doi.org/10.1111/j.1365-2362.1979.tb00888.x
  29. Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993;270:2693-8 https://doi.org/10.1001/jama.270.22.2693
  30. Wouters MG, Moorrees MT, van der Mooren MJ, Blom HJ, Boers GH, Schellekens LA, et al. Plasma homocysteine and menopausal status. Eur J Clin Invest 1995;25:801-5 https://doi.org/10.1111/j.1365-2362.1995.tb01687.x
  31. Wald NJ, Watt HC, Law MR, Weir DG, McPartlin J, Scott JM. Homocysteine and ischemic heart disease: results of a prospective study with implications regarding prevention. Arch Intern Med 1998;158:862-7 https://doi.org/10.1001/archinte.158.8.862
  32. Kawashiri M, Kajinami K, Nohara A, Yagi K, Inazu A, Koizumi J, et al. Plasma homocysteine level and development of coronary artery disease. Coronary Artery Disease 1999;10:443-7 https://doi.org/10.1097/00019501-199910000-00002