Growth Inhibition by Connexin26 Expression in Cultured Rodent Tumor Cells

Hae-Jung Lee;In-Kyung Lee;Kyung-Hwan Seul;Seung-Keun Rhee

  • Published : 20020000

Abstract

The Connexin (Cx) gene family acts as a tumor sup-pressor.However, it is unclear whether the tumor-suppressingactivity acquired by Cx gene transfectionis mainly due to the recovery of the gap junction-mediatedintercellular communication (GJIC) or toother unknown mechanisms. In order to elucidate themechanism of the Cx-induced tumor-suppressing ac-tivity,we transfected Cx26 cDNA into a rodent mam-marytumor cell-line (BICR-M1Rk) in which Cx43 hadbeen normally expressed and a typical pattern ofGJIC had been observed. The exogenous Cx26 wasmainly localized on the nuclear envelope, whereasmost of the endogenous Cx43 resided at the plasmamembrane of the transfected BICR-M1Rk. Consistentwith the localization of Cx26, GJIC was not increasedupon the transfection of Cx26 when it was assessed bya scrape-loading dye transfer technique. A conven-tional[ 3 H]-thymidine incorporation study showed thatthe growth rate of the Cx26-transfected cells was sig-nificantlydecreased (70%), compared to that of thecontrol BICR-M1Rk. Therefore, our results clearlydemonstrate that the exogenously expressed Cx26 inthe BICR-M1Rk cancer cell-line exerts an anti-proliferateactivity in a GJIC-independent manner.

Keywords

References

  1. J. Cell. Biol. v.108 Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues Beyer, E. C.;Kistler, J.;Paul, D. L.;Goodenough, D. A. https://doi.org/10.1083/jcb.108.2.595
  2. Eur. J. Biochem. v.238 Connections with connexins: the molecular basis of direct intercellular signaling Bruzzone, R.;White, T. W.;Paul, D. L. https://doi.org/10.1111/j.1432-1033.1996.0001q.x
  3. Neuron v.6 intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate Charles, A. C.;Merrill, J. E.;Dirkson, E. R.;Sanderson, M. J. https://doi.org/10.1016/0896-6273(91)90238-U
  4. Mol. Carcinog. v.16 Localization and function of the connexin 43 gap-junction protein in normal and various oncogene-expressing rat liver epithelial cells De Feijter, A. W.;Matesic, D. F.;Ruch, R. J.;Guan, X.;Chang, C. C.;Traosko, J. E. https://doi.org/10.1002/(SICI)1098-2744(199608)16:4<203::AID-MC4>3.0.CO;2-G
  5. Proc. Natl. Acad. Sci. v.88 Involvement of gap junctions in tumorigenesis: transfection of tumor cells with connezin 32 cDNA retards growth in vivo Eghbali, B.;Kessler, J. A.;Reid, L. M.;Roy, C.;Spray, D. C. https://doi.org/10.1073/pnas.88.23.10701
  6. Cardiovasc. Pathol. v.8 Myocardial connezin43 expression in left ventricular hypertrophy resulting from aortic regurgitation Goldfine, S. M.;Walcott, B.;Brink, P. R.;Magid, N. M.;Borer, J. S. https://doi.org/10.1016/S1054-8807(98)00011-8
  7. Cancer Lett. v.112 Stimulation of cell proliferation and inhibition of gap junctional intercellular communication by linoleic acid Hayashi, T.;Matesic, D. F.;Nomata, K.;Kang, K. S.;Chang, C. C.;Trosko, J. E. https://doi.org/10.1016/S0304-3835(96)04553-3
  8. Cell Growth Differ. v.7 Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential Hirschi, K. K.;Xu, C. E.;Tsukamoto, T.;Sager, R.
  9. Cancer Res. v.58 Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43) Huang, R. P.;Fan, Y.;Hossain, M. Z.;Peng, A.;Zeng. Z. L.;Boynton, A. L.
  10. Mol. Cell. Biol. v.13 Testis-specific mak protein kinase is expressed specifically in the meiotic phase in spermatogenesis and is associated with a 210-kilodalton cellular phosphoproteins Jinno, A.;Tanaka, K.;Matsushime, H.;Haneji, T.;Shibuya, M. https://doi.org/10.1128/MCB.13.7.4146
  11. J. Cell Biol. v.143 Aggresomes: a cellular response to misfolded proteins Johnston, J. A.;;Ward, C. L.;Kopito, R. R. https://doi.org/10.1083/jcb.143.7.1883
  12. Carcinogenesis v.21 Correlation between growth control, neoplastic potential and endogenous connexin43 expression in HeLa cell lines: implications for tumor progression King, T. J.;Fukushima, L. H.;Donlon, T. A.;Hieber, A. D.;Shimabukurc, K. A.;Bertram, J. S. https://doi.org/10.1093/carcin/21.2.311
  13. Oncogene v.19 Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo Krutovskikh, V. A.;Troyanovsky, S. M.;Piccoli, C.;Tsuda, H.;Asamoto, M.;Yamasaki, H. https://doi.org/10.1038/sj.onc.1203340
  14. J. Cell. Sci. v.108 Synthesis and assembly of human β₁gap junctions in BHK cells by DNA transfection with the human β₁cDNA Kumar, N. M.;Friend, D. S.;Gilula, N. B.
  15. J. Cell. Sci. v.97 Biochemical and immuno-chemical analysis of the arrangement of connexin43 in heart gap junction membranes Laird, D. W.;Revel, J. P.
  16. J. Cell Biol. v.131 Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in brefeldin A-treated rat mammary tumor cells Laird, D. W.;Castillo, M.;Kasprzak, L. https://doi.org/10.1083/jcb.131.5.1193
  17. Pfulger's Arch. v.422 Antibody perturbation analysis of gap junction permeability in rat cardiac myocytes Lal, R.;Laird, D. W.;Revel, J. P. https://doi.org/10.1007/BF00375070
  18. J. Cell Sci. v.114 Multiple pathways in the trafficking and assembly of connexin 26, 32 and 43 into gap junction intercellular communication channels Martin, P. E.;Blundell, G.;Ahmad, S.;Errington, R. J.;Evans, W. H.
  19. Cancer Res. v.55 Negative growth control of HeLa cells by connexin species specificity Mesnil, M.;Krutovskikh, V.;Piccli, C.;Elfgang, C.;Traub, O.;Willecke, K.;Yamasaki, H.
  20. Carcinogenesis v.20 The effect of connexin32 null mutation on hepatocarcinogenesis in different mouse strains Moennikes, O.;Buchmann, A.;Ott, T.;Willecke1, K.;Schwarz, M. https://doi.org/10.1093/carcin/20.7.1379
  21. Cell. Mol. Neurobiol. v.12 Characteristics of C6 glioma cells overexpressing a gap junction protein Naus, C. C.;Zhu, D.;Todd, S. D.;Kidder, G. M. https://doi.org/10.1007/BF00713370
  22. J. Med. Biol. Res. v.33 The molecular basis of selective permeability of connexins is complex and includes both size and charge Nicholson, B. J.;Weber, P. A.;Cao, F.;Chang, H.;Lampe, P.;Goldberg, G. https://doi.org/10.1590/S0100-879X2000000400002
  23. Int. J. Cancer v.78 Mutated connexin43 proteins ingibit rat glioma cell growth suppression mediated by wild-type connesin43 in a dominant-negative manner Omori, Y.;Yamasaki, H. https://doi.org/10.1002/(SICI)1097-0215(19981109)78:4<446::AID-IJC10>3.0.CO;2-4
  24. Carcinogenesis v.20 Gap junction proteins connexin32 and connexin43 partially acquire growth-suppressive function in HeLa cells by deletion of their C-terminal tails Omori, Y.;Yamasaki, H.
  25. Toxicol. Lett. v.96-97 Role of connexin (gap junction) genes in cell growth control: approach with site-directed mutagenesis and domijnant-negative effects Omori, Y.;Duflot-Dancer, A.;Mesnil, M.;Yamasaki, H. https://doi.org/10.1016/S0378-4274(98)00056-3
  26. Mol. Cells v.13 Hypertonicity induction of melanoma antigen, a tumor-associated gene Park, J-H.;Lee, S-0W.
  27. Biochem. Soc. Trans. v.28 Replicative senescence as a barrier to human cancer Parkinson, E. K.;Munro, J.;Steeghs, K.;Morrison, V.;Ireland, H.;Forsyth, N.;Fitzsimmons, S.;Bryce, S. https://doi.org/10.1042/bst0280226
  28. J. Cell Biol. v.148 Physiological role of gap-junctional hemichannels: extracellutlar calcium-dependent isosmotic volume regulation Quist, A. P.;Rhee, S. K.;Lin, H.;Lal, R. https://doi.org/10.1083/jcb.148.5.1063
  29. carcinogenesis v.14 Gap-junction protein gene suppresses tumorigenicity Rose, B.;Mehta, P. P.;Loewenstein, W. R. https://doi.org/10.1093/carcin/14.5.1073
  30. Proc. Natl. Acad. Sci. v.86 Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-triphosphate, and to calcium ions Saez, J. C.;Connor, J. A.;Spray, D. C.;Bennett, M. V. https://doi.org/10.1073/pnas.86.8.2708
  31. Cell Biol. Int. v.22 Connexin expression in Huntington's diseased human brain Vis, J. C.;Nicholson, L. F.;Faull, R. L.;Evans, W. H.;Severs, N. J.;Green, C. R. https://doi.org/10.1006/cbir.1998.0388
  32. Hum. Mutat. v.16 Mutations in the peripheral myelin protein zero and connexin32 genes detected by non-isotopic RNase cleavage assay and their phenotypes in Japanese patients with Charcot-Marie-Tooth disease Yoshihara, T.;Yamamoto, M.;Doyu, M.;Mis, K. I.;Hattori, N.;Hasegawa, Y.;Mokuno, K.;Mitsuma, T.;Sobue, G.
  33. Proc. Natl. Acad. Sci. v.88 Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation Zhu, D.;Caveney, S.;Kidder, G. M.;Naus, C. C. https://doi.org/10.1073/pnas.88.5.1883
  34. Proc. Natl. Acad. Sci. v.89 Growth regulation in glioma cells co-cultured with cells overexpressing a gap junction protein Zhu, D.;Kidder, G. M.;Cavency, S.;Naus, C. C. G. https://doi.org/10.1073/pnas.89.21.10218