Performance Improvement of Ir Oxide Electrode for Organic Destruction

이리듐 산화물 전극의 유기물 분해 성능 개선

Kim, Kwang-Wook;Lee, Eil-Hee;Kim, Jung-Sik;Shin, Ki-Ha;Jung, Boong-Ik;Kim, Kwang-Ho
김광욱;이일희;김정식;신기하;정붕익;김광호

  • Published : 2002.04.30

Abstract

This study has carried out a performance improvement of $IrO_{2}$ electrode for the purpose of organic destruction by sintering the electrode at a high temperature, and the material, electrochemical, and organic destruction properties of the electrode were evaluated by measurements of surface resitivity, TGA, XPS, AES, voltammogram, and TOC of 4CP destruction. A sintering temperature of around $650^{\circ}C$ rather than $400-550^{\circ}C$ suggested in the literatures for fabrication of Ir oxide electrode enhanced the organic destruction yield because $IrCl_{3}$ of the precursor solution on electrode surface was sufficiently converted to $IrO_{2}$. An additional oxide layer between $IrO_{2}$ layer and Ti substrate, to prevent a solid diffusion of $TiO_{2}$ due to oxidation of Ti substrate during high-temperature sintering, improved the organic destruction further so that the 4CP destruction yield raised to about 4 times higher than that by the conventional Ir oxide electrode. The destruction yield of 4CP solution with chloride ion at the improved electrode increased as much as that by $RuO_{2}$ electrode in the same solution.

본 연구에서는 유기물 분해를 위한 $IrO_{2}$ 전극을 고온 소결시킴으로써 성능을 향상시켰으며, 이 전극의 재료적, 전기화학적 특성 및 유기물 분해능 특성이 전극 표면저항, TGA, XPS, AES, voltammogram과 4CP 분해의 TOC를 측정함으로써 평가되었다. 문헌에 나타나 있는 Ir 산화물 전극 제조 소결온도 범위인 $400-550^{\circ}C$를 넘는 $650^{\circ}C$에서 전극의 소결은 코팅 용액의 $IrCl_{3}$을 충분히 $IrO_{2}$로 전환시켜 유기물 분해 성능을 증진시켰다. 또한 고온 소결 시 Ti 지지체가 산화되어 $TiO_{2}$가 전극 표면으로 고체 확산되고 이로 인한 전극 표면의 저항 증가 및 전극 활성 감소를 억제시키기 위하여 $TiO_{2}$-screening 층을 Ti 모재와 최종 Ir 산화물 전극 층 사이에 삽입시키는 경우, 유기물 분해율은 더욱 증진하여 기존의 Ir 산화물 전극에서의 4CP 분해율보다 약 4배 정도 증가하였으며, 유기물 용액에 염소이온이 공존할 경우 $RuO_{2}$ 전극에서의 유기물 분해율과 동등한 성능을 보였다.

Keywords

References

  1. Environmental Electrochemistry Rajeshwar, K.;Ibanez, J.G.
  2. Electrochemical Process for Clean Technology Scott, K.
  3. Electrochemical Oxygen Technology Kinoshida, K.
  4. Electrode of Conductive Metallic Oxides Trasatti, S.
  5. Electrochimica Acta v.29 Trasatti, S.
  6. Electrochimica Acta v.39 no.11 Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment Comniellis, C. https://doi.org/10.1016/0013-4686(94)85175-1
  7. Journal of The Electrochemical Society v.137 no.12 Boodts, J.F.C.;Trasatti, S. https://doi.org/10.1149/1.2086301
  8. J. Electrochem. Soc. v.136 no.6 Battisti, A.D.;Lodi, G.;Cappadonia, M.;Battaglin, G.;Kotz, R. https://doi.org/10.1149/1.2097498
  9. J. Appl. Electrochem. v.26 Krysa, J.;Kule, L.;Mraz, R.;Rousar, I.
  10. Canadian Journal of Chemistry v.75 no.11 Morphological, chemical, and electrochemical properties of Ti/(TiO<sub>2<> + IrO<sub>2<sub>) electrodes Silva, L.D.;Alves, V.A.;da Silva, M.A.P.;Trasatti, S.;Boots, J.F.C. https://doi.org/10.1139/v97-178
  11. Journal of The Electrochemical Society v.130 no.4 XPS STUDIES OF OXYGEN EVOLUTION ON Ru AND RuO//2 ANODES Kotz, R.;Lewerenz, H.J.;Stucki, S. https://doi.org/10.1149/1.2119829
  12. Journal of Applied Electrochemistry v.27 no.11 Evaluation of anode deactivation in chlor-alkali cells Pilla, A.S.;Cobo, E.O.;Duarte, M.M.;Salinas, D.R. https://doi.org/10.1023/A:1018444206334
  13. Electrochimica Acta v.46 no.6 Study on the electro-activity and non-stochiometry of a Ru-based mixed oxide electrode Kim, K.W.;Lee, E.H.;Kim, J.S.;Shin, K.H.;Kim, K.H. https://doi.org/10.1016/S0013-4686(00)00674-5
  14. Journal of The Electrochemical Society v.148 no.3 Effect of an Etching Ti Substrate on a Catalytic Oxide Electrode Kim, K.W.;Lee, E.H.;Kim, J.S.;Shin, K.H.;Kim, K.H. https://doi.org/10.1149/1.1349882
  15. Electrochimica Acta v.44 no.8-9 Alves, V.A.;da Silva, L.A.;Boodts, J.F.C. https://doi.org/10.1016/S0013-4686(98)00276-X
  16. Journal of Applied Electrochemistry v.21 no.4 Comninellis, C.;Vercesi, G.P. https://doi.org/10.1007/BF01020219
  17. Journal of The Electrochemical Society v.144 no.10 Surface characterization of thermally prepared, Ti-supported, Ir-based electrocatalysts containing Ti and Sn Lassa, T.A.F.;Bulhoes, I.L.O.S.;Abeid, L.M.C.;Boodts, J.F.C. https://doi.org/10.1149/1.1838017
  18. J. Appl. Electrochem. v.25 Comninellis, C.;Nerini, A.
  19. Environmental Science & Technology v.33 no.9 Electrochemical Oxidation of Chlorinated Phenols Rodgers, J.D.;Jedral, W.;Bunce, N.J. https://doi.org/10.1021/es9808189
  20. Physcial/Chemical Process v.2 Freeman, H.M.
  21. Environmental Oriented Electrochemistry Sequeira, C.A.C.
  22. HWAHAK KONGHAK v.38 Kim, K.W.;Lee, E.H.;Kim, J.S.;Choi, J.G.;Shin, K.H.;Lee, S.H.;Kim, K.H.
  23. HWAHAK KONGHAK v.39 Kim, K.W.;Lee, E.H.;Kim, J.S.;Choi, J.G.;Shin, K.H.;Lee, S.H.;Kim, K.H.
  24. Electrochimica Acta v.42 no.2 Oxygen evolution in acid solution on IrO2 + TiO2 ceramic films. A study by impedance, voltammetry and SEM Silva, L.D.;Alves, V.A.;da Silva, M.A.P.;Trasatti, S.;Boots, J.F.C. https://doi.org/10.1016/0013-4686(96)00160-0
  25. Journal of Applied Electrochemistry v.2 no.4 EFFICIENCY OF CHLORINE EVOLUTION IN DILUTE BRINES ON RUTHENIUM DIOXIDE ELECTRODES Kuhn, A.T.;Mortimer, C.J. https://doi.org/10.1007/BF00615275
  26. Environmental Oriented Electrochemistry Sequeira, C.A.C.
  27. Journal of The Electrochemical Society v.135 no.6 METAL ANODES AND HYDROGEN CATHODES: THEIR ACTIVITY TOWARDS O//2 EVOLUTION AND ClO//3 ** minus REDUCTION REACTIONS Tilak, B.V.;Tari, K.;Hoover, C.L. https://doi.org/10.1149/1.2095999
  28. Journal of Applied Electrochemistry v.2 no.4 EFFICIENCY OF CHLORINE EVOLUTION IN DILUTE BRINES ON RUTHENIUM DIOXIDE ELECTRODES Kuhn, A.T.;Mortimer, C.J. https://doi.org/10.1007/BF00615275