Cytotoxicity of Phenolic Compounds Isolated from Seeds of Safflower (Carthamus tinctorius L.) on Cancer Cell Lines

Bae, Song-Ja;Shim, Sun-Mi;Park, Yun-Ja;Lee, Jun-Young;Chang, Eun-Ju;Choi, Sang-Won

  • Published : 20020400

Abstract

The methanolic extract of roasted safflower seeds exhibited moderate cytotoxicity against three cancer cell lines, HepG2, MCF-7, and Hela, in a dose-dependent manner, as measured by MIT assay. The methanolic extract was further partitioned with n-hexane, ethyl acetate and n-butanol successively. The ethyl acetate fraction exhibited potent cytotoxicities against the cancer cell lines. NFeruloylserotonin (Sl), N-(p-coumaroyl)serotonin (S2), matairesinol (L1), 8'-hydroxyarctigenin (L2), luteolin (F1), and acacetin (F2) were isolated from the ethyl acetate extract, and their chemical structures were identified by UV, IR, NMR, and MS spectroscopic methods. Six phenolic compounds possessed comparable cytotoxicity against three cancer cells. In particular, F1 and F2 had the most potent cytotoxicity with $IC_{50}$ values of 51.8 and $62.1{\mu}g/mL$ for Hela cell, 33.6 and $37.7{\mu}g/mL$ for MCF-7 cell and 47.3 and $56.6{\mu}g/mL}$ for HepG2 cell, respectively. In addition, L1, L2, Sl, and S2 also showed strong cytotoxicity, although activities of serotonins were weaker than those of lignans. On normal human liver cell (WRL68) at a high concentration of $100{\mu}g/mL}$ two serotonins and lignans did not show any cytotoxicity, and two flavonoids exhibited only about 50% cytotoxicity. These results suggest that phenolic compounds in the safflower seeds may be useful as potential cancer chemopreventive agents.

Keywords

References

  1. Cancer J. v.5 Cancer chemoprevention Tanaka, T.
  2. Carcinogenesis v.14 no.9 Cancer chemoprevention: Principles and prospects Morse, M.A.;Stoner, G.D. https://doi.org/10.1093/carcin/14.9.1737
  3. Oncology v.10 Strategies for identification and clinical evaluation of promising chemopreventive agents Kelloff, G.J.;Hawk, E.T.;Crowell, J.A.;Boone, C.W.;Nayfield, S.G.;Perloff, M.;Steele, V.E.;Lubet, R.A.;Sigman, C.C.
  4. Cancer Res. v.48 Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay Michael, C.A.;Dominic, A.S.;Anue, M.
  5. Mutat. Res. v.428 Molecular mechanism of chemopreventive effects of selected dietary and medicinal phenolic substances Surh, Y.J. https://doi.org/10.1016/S1383-5742(99)00057-5
  6. Cancer Res. v.48 Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines Scudiero, D.A.;Shoemaker, R.H.;Paull, K.D.;Monks, A.;Tierney, S.;Nofziger, T.H.;Currens, M.J.;Seniff, D.;Boyd, M.R.
  7. Sangyakhak Han, D.S.
  8. Sinyakboncho Kim, I.H.
  9. J. Korean Soc. Food Sci. Nutr. v.28 Effects of safflower seed (Carthamus tinctorious L.) powder on lipid metabolism in high fat and high cholesterolfed rats Kim, J.H.;Jeon, S.M.;Park, Y.A.;Choi, M.S.;Moon, K.D.
  10. J. Korean Soc. Food Sci. Nutr. v.30 Effects of defatted safflower and perilla seed powders on lipid metabolism in ovariectomized female rats fed high cholesterol diets Cho, S.H.;Choi, S.W.;Choi, Y.S.;Lee, W.J.
  11. J. Korean Soc. Food Sci. Nutr. v.27 Effects of diet of Korean safflower (Carthamus tinctorius L.) seed powder on bone tissue in rats during the recovery of rib fracture Kim, J.H.;Jeon, S.M.;An, M.Y.;Ku, S.K.;Lee, J.H.;Choi, M.S.;Moon, K.D.
  12. Yakhak Hoehi v.43 Effects of safflower seed on the fracture healing in rat tibia Chung, S.Y.;Choi, H.J.;Chung, M.W.;Ahn, M.R.;Yoo, T.M.;Rheu, H.M.;Yang, J.S.
  13. Agric. Biol. Chem. v.44 Conjugated serotonins and phenolic constituents in safflower seed (Carthamus tinctorius L.) Sakamura, A.;Terayama, Y.;Kawakatsu, S.;Ichihara, A.;Saito, H. https://doi.org/10.1271/bbb1961.44.2951
  14. Phytochemistry v.11 no.2 A new steroid from safflower Palter, R.;Lundin, R.E.;Fuller, G. https://doi.org/10.1016/0031-9422(72)80055-4
  15. Chem. Pharm. Bull. v.44 Novel antioxidants from safflower (Carthamus tinctorus L.) oil cake Zhang, H.L.;Nagatsu, A.;Sakakibara, J. https://doi.org/10.1248/cpb.44.874
  16. Chem. Pharm. Bull. v.45 Antioxidative compounds isolated from saffiower (Carthamus tinctorus L.) oil cake Zhang, H.L.;Nagatsu, A.;Watanabe, T.;Sakakibara, J.;Okuyarna, H. https://doi.org/10.1248/cpb.45.1910
  17. Food Sci. Biotechnol. v.8 In vitro antioxidant activity of safflower (Carthamus tinctorus L.) seeds Roh, J.S.;Sun, W.S.;Oh, S.U.;Lee, J.I.;Oh, W.T.;Kim, J.H.
  18. J. Food Sci. Nutr. v.4 Antioxidative activity of phenolic compounds in roasted safflower (Carthamus tinctorus L.) seeds Kang, G.W.;Chang, E.J.;Choi, S.W.
  19. Journal of Interferon & Cytokine Research v.18 no.6 Serotonin derivative, N-(p-coumaroyl) serotonin, inhibits the production of TNF-, IL-l, IL-l, and lL-6 by endotoxin-stimulated human blood monocytes Kawashima, S.;Hayashi, M.;Takii, T.;Kimura, H.;Zhang, H.L.;Nagatsu, A.;Sakakibara, J.;Murata, K.;Oomoto, Y.;Onozaki, K. https://doi.org/10.1089/jir.1998.18.423
  20. J. Biochem. v.125 Serotonin derivative, N-(p-coumaroyl) serotonin, isolated from safflower (Carthamus tinctorius L.) oil cake augments the proliferation of normal human and mouse fibroblasts in synergy with basic fibroblast growth factor (FGF) or epidermal growth factor (EGF) Takii, T.;Hayashi, M.;Hiroyuki, H.;Chiba, T.;Kawashima, S.;Zhang, H.L.;Nagatsu, A.;Sakakibara, J.;Onozaki, K. https://doi.org/10.1093/oxfordjournals.jbchem.a022368
  21. Bone-sparing effect of safflower seeds in ovariectomized rats Kim, H.J.;Bae, Y.C.;Choi, S.W.;Cho, S.H.;Park, R.W.;Choi, Y.S.;Lee, W.J.
  22. Abstract No. P11-22 presented at the Congress of Food Science and Nutrition Effects of cytotoxicity and quinone reductase induction of five different fractions of safflower (Carthamus tinctorus L.) seeds against five cancer cell lines Shim, S.M.;Bae, S.J.
  23. J. Korean Soc. Food Sci. Nutr. v.29 Cytotoxicity of Daucus carota L. on various cancer cells Han, E.J.;Roh, S.B.;Bae, S.J.
  24. Phytochemistry v.29 no.6 Lignans of Forsythia intermedia Rahman, M.M.;Dewick, P.M.;Jackson, D.E.;Lucas, J.A. https://doi.org/10.1016/0031-9422(90)85050-P
  25. Journal of Agricultural and Food Chemistry v.47 no.8 Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal Meagher, L.P.;Beecher, G.R.;Flanagan, V.P.;Li, B.W. https://doi.org/10.1021/jf981359y
  26. Journal of Agricultural and Food Chemistry v.49 no.10 Free radical scavenging active components from Cedrus deodara Tiwari, A.K.;Srinivas, P.V.;Kumar, S.P.;Rao, J.M. https://doi.org/10.1021/jf010573a
  27. Phytochemistry v.21 (+)-Arctigenin, a lignan from Wikstroemia indica Suzuki, H.;Lee4, K.S.;Haruna, M.;Iida, T.;Ito, K.;Huang, H.C. https://doi.org/10.1016/S0031-9422(82)85082-6
  28. The systematic identification of flavonoids Mabry, T.J.;Markham, K.R.;Thomas, M.B.
  29. $^1H$ nuclear magnetic resonance spectroscopy of flavonoids and their glycosides in ?hexadeuterodimethylsulfoxide;The Flavonoids Markham, K.R.;Geiger, H.;Harborne, J.B.(ed.)
  30. Carbon-13 NMR spectroscopy of flavonoids;The Aavonoids: Advances in Research Markham, K.R.;Chari, V.M.;Harbome, J.B.(ed.);Mabry, T.J.(ed.)
  31. FEBS Letters v.438 no.3 Intestinal absorption of luteolin and luteolin $7-O- {\beta}-glucoside$ in rats and humans Shimoi, K.;Okada, H.;Furugori, M.;Goda, T.;Takase, S.;Suzuki, M.;Hara, Y.;Yamamoto, H.;Kinae, N. https://doi.org/10.1016/S0014-5793(98)01304-0
  32. British Journal of Pharmacology v.128 no.5 Effects of luteolin and quercetin, inhibitors of tyrosinase kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor Huang, Y.T.;Hwang, J.J.;Lee, P.P.;Ke, F.C.;Huang, J.H.;?Huang, C.J.;Kandaswami, C.;Middleton, E.;Lee, M.T. https://doi.org/10.1038/sj.bjp.0702879
  33. Journal of Agricultural and Food Chemistry v.47 no.11 Antioxidative phenolic compounds from Japanese barnyard millet (Echinochlora utilis) grains Watanabe, M. https://doi.org/10.1021/jf990498s