Morphological and Physiological Characteristics of Emblings Derived from Somatic Embryos , Seedlings , and Mature Trees in Larix leptolepis

낙엽송(Larix leptolepis) 체세포배 유래 식물체와 종자 실생묘 및 성숙목간의 형태, 생리적 특징

Kim, Yong-Wook;Kim, Joon-Chul;Youn, Yang;Moon, Heung-Gyu;Lee, Jae-Soon
김용욱;김준철;윤양;문흥규;이재순

  • Published : 2002.03.31

Abstract

The 32-year-o1d trees, 32-year old seedlings and emblings which regenerated from somatic embryos werecompared to the foliar characteristics such as size of the needles (length, width, dry weight and surfacearea), stomata shapes (length, width and density) and chlorophyll contents (chlorophyll a, b and totalchlorophyll) in Larix leptolepis. The seedlings and emblings were similar in terms of length (35.6+-3.6,36.9+-3.9mm), width (1.3+-0.03, 1.4+-0.lmm), dry weight (2.26+-0.07, 3.78+-0.12mg) and surface area (0.36+-0.01, 0.42+-0.03cm2) of needle. Seedlings and emblings showed similar size of the length, width ofstomata except 3-year old seedlings with the lowest width (10.2+-0.12/um). However, the density ofstomata was variable among the plants. In comparison of chlorophyll content in the needles, the chlorophylla and b were similar in all examined plants, and but 32-year old trees showed the highest content ofchlorophyll a (990+-6.3ug/g) and b (930+-6ug/g), respectively. In case of total chlorophyll content, allplants showed similar pattern whereas the 32-year old trees was the highest content (2160+-12ug/g) amongthe trees.

낙엽송의 32년생 성목, 3년생 실생묘, 체세포배로부터 유래된 식물체간에 침엽의 형태(길이, 폭, 건중량 및 표면적), 기공의 형태(길이, 폭 및 밀도), 그리고 엽록소 함량(엽록소 a, b 및 총 엽록소량)을비교하였다. 침엽의 길이(35.6+-3.6, 36.9+-3.9mm), 폭(1.3+-0.03, 1.4+-0.1mm), 건중량(2.26+-0.07,3.78+-0.12mg) 및 표면적(0.36+-0.01, 0.42+-0.032cm2)은 실생묘와 체세포배 유래 식물체간에 비슷한수치를 보였다. 그리고 기공의 길이와 폭 비교에서는 가장 작은 폭인 10.2+-0.12um를 보인 3년생의 실생표를 제외하곤 거의 비슷하였다. 그러나 기공 밀도에서는 식물체간에 다양한 밀도 수치를 보였다. 성목, 실생묘. 체세포배 유래 식물체간의 엽록소 함량 비교에서 엽록소 a와 b는 모든 식물체에서 비슷한수치를 보였으나 32년생 성목에서 가장 높은 엽록소 a(990+-6.3ug/g) 및 b(930+-6ug/g)를 나타냈다. 총엽록소 함량도 시료에서 비슷하게 나타났지만, 특히 32년생 성목에서 가장 높은 값(2160+-12ug/g)을 보였다.

Keywords

References

  1. 구영본, 1995. 낙엽송의 삽목에 의한 대량증식과 발근 기구 구명. 서울대학교 박사학위 논문. pp. 53-54
  2. 임업연구원, 1992. 한국수목도감. pp. 14
  3. Attree, S.M. and L.C. Fowke. 1990. Somatic embryo maturation. germination, and soil establishment of plants of black and white spruce (Picea mariana and Picea glauca). Canadian Journal of Botany 68 : 2583-2589 https://doi.org/10.1139/b90-326
  4. Becwar, M.R., T. Noland and J. Wyckoff. 1989. Maturation, germination. and conversion of norway spruce (Picea abies L.) somatic embryos to plants. In Vitro Cellular and Development Biolology-Plant 25 : 575-580 https://doi.org/10.1007/BF02623571
  5. Blanke, M.M. and A.R. Belcher. 1989. Stomata of apple leaves cultured in vitro. Plant Cell, Tissue and Organ Culture 19 : 85-89 https://doi.org/10.1007/BF00037780
  6. Dong, J.Z. and D.1. Dunstan. 2000. Molecular biology of somatic embryogenesis in conifers. In : Molecular Biology of Woody Plants. S.M. Jain and S.C. Minocha. Kluwere Academic Publishers Inc., Netherlands. vol. 1. p 51-87
  7. Eastman. P.A.K., F.B. Webster. J.A. Pitel and D.R. Roberts. 1991. Evaluation of somaclonal variation during somatic embr yogenesis of interior spruce (Picea glauca engelmanii complex) using culture morphology and isozyme analysis. Plant Cell Reports 10 : 425-430
  8. Fan, S. and S.C. Grossnickle. 1998. Comparision of gas exchange parameters and shoot water relations interior spruce (Picea glauca (Moench Vos x Picea engelmannii Parry ex Engelm) clones under repeated soil drought. Canadian Journal of Forest Research 28 : 831-840 https://doi.org/10.1139/cjfr-28-6-831
  9. Grossnickle. S.C., J.E. Major and R.S. Folk. 1993. Interior spruce seeding compared with emblings produced from somatic embryogensis. I. Nursery devolopment, fal ac-climation, and over-winter storage. Canadian Journal of Foest Research 24 : 1376-1384
  10. Grossnickle, S.C. and S. Fan. 1998. Genetic variation in summer gas exchange patterns of interior spruce (Picea glauca(Moench Vos x Picea engelmannii Parry ex Engelm). Canadian Journal of Forest Research 28: 831-840 https://doi.org/10.1139/cjfr-28-6-831
  11. Hakman, I. and S. von Arnold. 1985. Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce). Journal of Plant Physiology 121 : 149-158 https://doi.org/10.1016/S0176-1617(85)80040-7
  12. Isabel, N., L. Tremblay, M. Michaud, F .M. Tremblay and J. Bousquet. 1993. RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill.) B. S. P . Theoretical and Applied Genetics 86 : 81-87
  13. Isabel, N., R. Boivin, C. Levasseur, P.M. Charest, J. Bousquet and F. M. Tremblay. 1996. Occurrence of somaclonal variation among somatic embryo derived white spruce (Picea glauca, Pinaceae). American Journal of Botany 83: 1121-1130 https://doi.org/10.2307/2446195
  14. Kim, Y.W., Y. Youn, E.R. Noh, J.C. Kim. 1999. Somatic embryogenesis and plant regeneration from immature Zygotic embryos of Japanese larch (Larix lePtolepis). Plant Cell, Tissue and Organ Culture 55 : 95-101 https://doi.org/10.1023/A:1006120302512
  15. Klimaszewska, K., Y. Devantier, D. Lachance, M.A. Lelu and R.J. Charest. 1997. Larix lancina (tamarack) : somatic embryogenesis and genetic transformation. Canadian Journal of Forest Research 27 : 538-550 https://doi.org/10.1139/cjfr-27-4-538
  16. Larnharnedi, M.S., H. Chamberland, P. Y. Bernier and F.M. Tremblay. 2000. Clonal variation in morphology, growth, physiology, anatomy and ultrastructure of contained-grown white spruce somatic plants. Tree Physiology 20: 869-880 https://doi.org/10.1093/treephys/20.13.869
  17. Lelu, M.A., C. Bastien, K. Klimaszewska and P. J. Charest. 1994. An improved method for somatic plantlet production in hybrid larch (Larix x leptoeuropaea) : Part 2. Control of germination and plantlet development. Plant Cell, Tissue and Organ Culture 36 : 117-127 https://doi.org/10.1007/BF00048322
  18. Litvay, J.D., D.C. Verma and M.A. Johnson. 1985. Influence of a loblolly pine (Pinus taeda L.) culture medim and its components on growth and somatic embr yogenesis of the wild carrot (Darcus carota L.). Plant Cell Reports 4 : 325-328 https://doi.org/10.1007/BF00269890
  19. Mackinney, G. 1941. Absorption of light by chlorophyll solutions. Journal of Biological Chemistry 140: 315-322
  20. Nagmani, R. and J.M. Bonga. 1985. Embryogenesis in subcultured callus of Larix decidua. Canadian Journal of Forest Research 15 : 1088-1091 https://doi.org/10.1139/x85-177
  21. Nsangou, M. and M. Greenwood. 1998. Physiological and morphological differences between somatic, in vitro germinated, and normal seedlings of red spruce (Picea rubens Sarg.). Canadian Journal of Forest Research 28 : 1088-1092 https://doi.org/10.1139/cjfr-28-7-1088
  22. Park, J.M., H.M. Ro, Y.M. Kim and C.S. Seong. 1996. Chlorophyll determination in horticultural crops using dimethyl sulfoxide. RDA Journal of Agriculture Science 38 : 553-558
  23. Sutton, B.C.S., S.C. Grossnickle, D.R. Roberts, J. H. Russell and G. K. Kiss. 1993. Somatic embryogenesis and tree improvement in interior spruce. Journal of Forestry 1 : 34-38
  24. Thompson, R.G. and P. von Aderkas. 1992. Somatic embryogenesis and plant regeneration from immature embryos of western larch. Plant Cell Reports 11 : 379-385 https://doi.org/10.1007/BF00234365
  25. von Aderkas, P. and J.M. Bonga. 2000. Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiology 20: 921-928 https://doi.org/10.1093/treephys/20.14.921
  26. Webster, F.B., D.R. Roberts, S.M. Mcinnis and B.C.S. Sutton. 1990. Propagation of interior spruce by somatic embryogenesis. Canadian Journal of Forest Research 20 : 1759-1765 https://doi.org/10.1139/x90-234