Reductive Dechlorination of Chlorophenols by Palladized Iron

팔라듐으로 코팅된 영가철을 이용한 염화페놀류의 환원적 분해

Kim, Young-Hun
김영훈

  • Published : 20020000

Abstract

Palladium coated iron (Pd/Fe), a bimetal, was investigated for its potential to degrade less chlorophenols. Catalytically modified zero valent iron (Pd/Fe) was prepared by reductive adsorption of the secondary metal on iron and tested as reductant. The results showed that Pd/Fe rapidly degraded three monochlorophenols and two dichlorphenols. Phenol and cyclohexane were detected as daughter products. Based on the mass balance, the degradation turned out mainly dechlorination. In the kinetic study, the reaction rate was in order of 4-CP > 3-CP > 2-CP>2,30DCP > 2,4-DCP. The higher degradation rate for less chlorinated phenol agreed with the result of previous studies for chloroethenes. The degradation rate was proportional to the metal surface area. The degradation pathaways were also discussed

Keywords

References

  1. W. M Shaub, and W. Tsang: Dioxin formation in incinerators, Environ. Sci. Technol., 17, pp. 721-730 (1983) https://doi.org/10.1021/es00118a007
  2. M. D. Mikesell, and S. A Boyd: Enhancement of pentachlorcobeool degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage sludge, Environ. Sci. Technol., 22, pp. 1411-1414 (1988) https://doi.org/10.1021/es00177a003
  3. A. Davis, J. Campbell, C. Gilbert, M. V. Ruby, M. Benett, and S. Tobin: Attenuation and biodegradation of chlorophenols in ground water at a former wood treating facility, Ground Water, 32, pp. 248-257 (1994) https://doi.org/10.1111/j.1745-6584.1994.tb00639.x
  4. P. Dabo, A. Cyr, F. Laplante, F. Jean, and H M. J. Lessard: Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or eyelohexanol, Environ. Sci. Technol., 34, pp. 1265-1268 (2000) https://doi.org/10.1021/es9911465
  5. C. H. Lin, and S. K Tseng: Electrochemically reductive dechlorination of chlorophenol using nickel and zinc electrodes, Water Science and Technology, 42, pp. 167-172 (2000)
  6. I. F. Cheng, Q. Fernando, and N. Korte: Electronchemical dechlorination of 4-chlorophenol to phenol, Environ. Sci. Technol., 31, pp. 1074-1078 (1997) https://doi.org/10.1021/es960602b
  7. A Caruana: 1,200-Foot permeable reactive barrier in use at the Denver Federal Center, Ground Water Currents, March 1998, (1998)
  8. D. W. Blowes, C. J. Ptacek, S. G. Bermer, C. W. T. McRae, T. A. Bennett, and R. W. PuIs: Treatment of inorganic contaminants using permeable reactive barriers, Journal of Contaminant Hydrology, 45, pp. 123-137 (2000) https://doi.org/10.1016/S0169-7722(00)00122-4
  9. R. D. Ludwig, R. G. .MCGregor, D. W. Blowes, S. G. Benner, and K Mountjoy: A permeable reactive barrier for treatment of heavy metals, Ground Water, 40, pp. 59-66 (2002) https://doi.org/10.1111/j.1745-6584.2002.tb02491.x
  10. S. J. Morrison, D. R. Metzler, and C. E. Carpenter; Uranium rreciIitation in a perrreable reactive barrier by progressive irreversible dissolution of zerovalent iron, Environ. Sci. Technol., 35, pp. 385-390 (2001) https://doi.org/10.1021/es001204i
  11. M. M. Scherer, S. Richter, R. L. Valentine, and P. J. J. Alvarez: Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up, Critical Reviews in Environmental Science and Technology, 30, pp. 363-411 (2000) https://doi.org/10.1080/10643380091184219
  12. Y.-H. Kim. 1999. Reductive dechlorination of chlorinated aliphatic and aromatic compounds using zero valent metals: modified metals and electron mediators. Ph. D. Dissertation. Texas A&M University, College Station
  13. H. C. Song. 1900. Degradative stabilization of tetrachloroethylene by zero valent zinc, 'Thesis. Texas A&M Univeristy, College Station
  14. C.-B. Wang, and W.-X. Zhang: Synthesizing nanoscale iron particles for rapid and complete dechlorination of TeE and PCBs, Environ. Sci. Technol., 31, pp. 2154-2156 (1997) https://doi.org/10.1021/es970039c
  15. S. Choe, Y.-Y. Chang, K.-Y. Hwang, and J. Khirn; Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere, 41, pp. 1307-1311 (2000) https://doi.org/10.1016/S0045-6535(99)00506-8
  16. B. Schrick, S. M Ponder, and T. E. Mallouk. 2000. Remediation of chlorinated hydrocarbons using supported zero valent nickel-iron nanoparticles, Pages 639-640 in American Chemical Society National Meeting, Division of Environmental Chemistry. American Chemical Society, Washington, DC
  17. Y.-H. Kim, and R. R. Carraway: Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons, Environ. Sci. Technol., 34, pp. 2014-2017 (2000) https://doi.org/10.1021/es991129f
  18. C. Grittini, M Malcomson, Q. Fernando, and N. Korte: Rapid dechlorination of polychlorinated biphenyls on the surface of a PdlFe bimetallic system, Environ. Sci. Technol., 29, pp. 2898-2900 (1995) https://doi.org/10.1021/es00011a029
  19. W. Li, and K. J. Klabunde: Ultrafine zinc and nickel, palladium, silver coated zinc particles used for reductive rehalogenation of chlorinated ethylenes in aqueous solution, Croat. Chem Acta., 71, pp. 863-872 (1998)
  20. B. R Helland, P. J. Alvarez, and J. L. Schnoor: Reductive dechlorination of carbon tetrachloride with elemental iron, J. Hazard. Mater, 41, pp. 205-216 (1995) https://doi.org/10.1016/0304-3894(94)00111-S
  21. W. S. Orth, and R W. Gillham: Dechlorination of trichloroethene in aqueous solution using FeO, Environ. Sci. Technol., 30, pp. 66-71 (1996) https://doi.org/10.1021/es950053u
  22. W. A Arnold, and A. L. Roberts: Pathways of chlorinated ethylene and chlorinated acetylene reootion with Zn(O), Environ. Sci. Technol., 32, pp. 3017-3025 (1998) https://doi.org/10.1021/es980252o
  23. J. March. Advaoced Organic Chemistry, McGraw-Hill, New York, pp. (1985)
  24. L. J. Matheson, and P. G. Tratnyek: Reductive dehalogenation of chlorinated rrethanes by iron metal, Environ. Sci. Technol., 28, pp. 2045-2053 (1994) https://doi.org/10.1021/es00061a012
  25. T. L. Johnson, M. M Scherer, and P. G. Trstnyek; Kinetics of halogenated organic compound degradation by iron metal, Environ. Sci. Technol., 30, pp. 2634-2640 (1996) https://doi.org/10.1021/es9600901
  26. C. Su, and R. W. Puls: Kinetics of trichloroethene reduction by zerovalent iron and tin: pretreattrent effect, awarent activation energy, and intermediate products, Environ. Sci. Technol., 33, pp. 163-168 (1999) https://doi.org/10.1021/es980481a