Karyotype Analysis of a Korean Cucumber Cultivar (Cucumis sativus L. cv. Winter Long) UsingC-banding and Bicolor Fluorescence in situ Hybridization

구달호;허윤강;진동춘;방재욱

  • Published : 20020000

Abstract

An intensive karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) was car-ried out with three different methods. These included Feulgen staining, Giemsa C-banding, and fluorescence in situ hybridization (FISH). The mitotic chromosomes of the cucumber (2n = 2x = 14) were characterized, based on the length and arm ratio values. A C-banding analysis showed dark stains on the centromeric, te-lomeric, and intercalary regions of the chromosomes, except that chromosome 2 had a heavy staining in the long arm. Bicolor FISH, using 45S and 5S rDNA probes, provided additional information to identify cucumber chromosomes. The signals for 45S rDNA were detected on the pericentromeric regions of chro-mosomes 1, 2, and 4. The signals for 5S rDNA were on the short arm of chromosome 5. Similar band patterns (as the C-banding) were observed when the chromo-somes were counter-stained with 4?6-diamidino-2-phenyoindole (DAPI). The data implied that the karyotype of the Korean cucumber cultivar is peculiar and different from previous reports.

Keywords

References

  1. Genome v.43 DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species Ali, H. B. M.;Neister, A.;Schubert, I. https://doi.org/10.1139/gen-43-6-1027
  2. Bull. Natl. Inst. Sci. v.34 Taxonomy of cucurbitaceae Ayyangar, K. R.
  3. J. Genet. v.48 Cytogenetical investigation in some common cucurbits, with special regerence to fragmentation of chromoomes as physical basis of speciation Bhaduri, P. N.;Bose, P. C. https://doi.org/10.1007/BF02989384
  4. Genet. Res. Crop Evol. v.45 A reevaluation of karyotype in cucumber (Cucumis sativus L.) Chen, J. F.;Staub, J. E.;Jiang, J. https://doi.org/10.1023/A:1008603608879
  5. Can. J. Bot. v.77 Physical mapping of 45S rRNA genes in Cucumis soecies by fluorescence in situ hybridization Chen, J. F.;Staub, J. E.;Jiang, J. https://doi.org/10.1139/cjb-77-3-389
  6. Plats: Genetics, Breeding, and Evolution, Part B Cytogenetic in genus Cucumis; in Chromosome Engineering Dane, F.;Tsuchiya, T.(ed.);Gupta, P. K.(ed.)
  7. Genome v.39 5S rRNA genes in bribe phaseoleae: array size, number, and dynamics Danna, K. H.;Workman, R.;Coryell, V.;Keim, P. https://doi.org/10.1139/g96-056
  8. Food and Agroculture Organization of the United Nations v.107 Yearbook Production 1992 FAO
  9. Chromosoma v.107 Assignment of likage groups to pea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridzation Fuchs, J.;Kuhne, M.;Schubert, I. https://doi.org/10.1007/s004120050308
  10. Theor. Appl. Genet. v.87 Bariability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization Fukui, K.;Ohmido, N.;Khush, G. S.
  11. J. Mol. Biol. v.221 rDNA intergenic region from Arabidopsis thaliana: structural analysis, intraspecific variation and functional implications Grundler, P.;Unfried, I.:Pascher, K.;Schweizer, D. https://doi.org/10.1016/0022-2836(91)90929-Z
  12. Plat Breed v.117 New C-banding pattern for chromosome identification in cucumber (Cucumis sativus L.) Hoshi, Y.;Plader, W.;Malepszy, S.
  13. Cytologia v.56 C-banded karyotypes of sevesn cultivars of Oryza sativa Hamoud, M. A.;Hassan, Y. A.;Nagi, W.;Selim, E. E. https://doi.org/10.1508/cytologia.56.319
  14. Caryologia v.52 Physical mapping d of 45S rRNA gene loci in the cucumber (Cucumis sativus L.) Hoshi, Y.;Plader, W.;Malepszy, S. https://doi.org/10.1080/00087114.1998.10589153
  15. Theor. Appl. Genet. v.81 Heterochromatic differectiation in barley chromosomes revealed by C and N-banding techniques Kakeda, K.;Fukui, K.;Yamagata, H. https://doi.org/10.1007/BF00215715
  16. Genome v.35 Prganization and evolution of higher plant nuclear genomes Lapitan, N. L. V. https://doi.org/10.1139/g92-028
  17. Genome v.35 Nomenclature for centromeric position in chromosomes Lean, A.;Frekga, D.;Sandberg, A.
  18. Hereditas v.88 Giemsa C-banding of barley chromosomes I. Banding pattern polymorphism Linde-Saursen, I. https://doi.org/10.1111/j.1601-5223.1978.tb01603.x
  19. Ann. Bot. v.71 Molecular cytogenetics of the genus Arabidopsis: in situ localization of rDNA sites, chromosomes number and diversity in centromeric heterochromatic Maluszynska, J.;Heslop-Harrison, J. S. https://doi.org/10.1006/anbo.1993.1063
  20. Genome v.36 Physical mapping of rDNA loci in Brassica species Maluszynska, J.;Nagahara, Y.;Yamamoto, M. https://doi.org/10.1139/g93-102
  21. Genome v.35 Simultaneous discromination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and high repeated DNA probes Mukai, Y.;Nagahara, Y.;Yamamoto, M.
  22. Newsl. v.13 A new manual for fluorescence in situ gybridization (FISH) in plant chromosomes Ohmido, N.;Fukui, K.
  23. Mol. Cells v.10 Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species. Park, Y. K.;Park, K. C.;Park, C. H.;Kim, N. S. https://doi.org/10.1007/s10059-000-0018-4
  24. Ribosomal DNA in maize; in Chromosome Structure and Function; Impact of New Concepts Phillips, R. L.;McMullen, M. D.;Enomoto, S.;Rubenstein, I.;Gustafson, J. P.(ed.);Appels, R. (ed.)
  25. Z. Pflanzen$\"{u}$chtg v.96 Cytological analysis of the genome of cucumber (Cucumis sativus L.) and muskmelon (Cucumis melo L.). Ramachandran, C.;Seshadri, V. S.
  26. Molecular Cloning: A Laboratory Manual, (2nd ed.) Sambrook, J.;Fritsch, E. F.Maniatis, T.
  27. Genome v.43 Comparative physical mapping of the 18S-5.8S-26S rDNA in three sorghum species. Sang, Y.;Liang, G. H. https://doi.org/10.1139/gen-43-5-918
  28. Plant Syst. Evol. v.183 An overview of evolution in plant 5S DNA. Sastri, D. C.;Hilu, K.;Appels, R.;Lahudah, E. S.;Playford, J.;Baum, B. R. https://doi.org/10.1007/BF00940801
  29. Chromosome Res. v.5 Karyotype analysis of Helianthus annuus after Giemsa banding and fluorescence in situ hybridization. Schrader, O.;Ahne, R.;Fuchs, J.;Schubert, I. https://doi.org/10.1023/A:1018412912790
  30. Caryologia v.27 Karyological studies in Cucumis (L.). Sing, A. K.;Roy, R. P.
  31. Exp. Cell Res. v.75 A simple technique for demonstrating centromeric heterochromatin. Sumner, A. T. https://doi.org/10.1016/0014-4827(72)90558-7
  32. Cytologia v.35 Cytological studies in Cucumis and Citrullus. Trivedi, R. N.;Roy, R. P. https://doi.org/10.1508/cytologia.35.561
  33. Heredity v.36 Heterochromatic patterns in Allium. 1. The relationship between the species of the Cepa group and its allies. Vosa, C. G. https://doi.org/10.1038/hdy.1976.45
  34. Plant J. v.11 Ribosomal transcription units integrated via TDNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. Wanzenb$\"{o}$ck, E.-M.;Sch$\"{o}$fer, C.;Schweizer, D.;Bachmair, A. https://doi.org/10.1046/j.1365-313X.1997.11051007.x
  35. Nucleic Acids Res. v.18 Fingerprinting genomes using PCR with arbitrary primers. Welsh, J.;McClelland, M. https://doi.org/10.1093/nar/18.24.7213
  36. Nucleic Acids Res. v.18 DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Williams, J. G. K.;Kubeik, A. R.;Livak, K. J.;Rafalski, J. A.;Tingey, S. V. https://doi.org/10.1093/nar/18.22.6531