Reaction Characteristics of $CO_2$ Separation from a Syngas Using CaO

산화칼슘을 이용한 합성가스내의 이산화탄소 분리반응 특성

Kim, Jae-Kwon;Yoo, Kyung-Seun;Park, Tae-Jin;Song, Byung-Ho;Lee, Jae-Goo;Kim, Jae-Ho;Han, Choon
김재권;유경선;박태진;송병호;이재구;김재호;한춘

  • Published : 2002.10.31

Abstract

Reaction characteristics of $CO_2$ separation have been investigated in a thermogravimetric analyzer and packed bed reactor using CaO for the removal of $CO_2$ in a syngas produced from the gasification of combustible wastes. Reactions of CaO with $CO_2$ were fitted well by the rate equation of shrinking core model at the product layer diffusion control regime. Furthermore, the reaction order and the activation energy were found as 1.95 and 104 kJ/mol, respectively. Reaction rates of CaO does not increases with the increase of operating pressures, which might be because CaO has macropores in the particle inside and reaction is carried out by the surface solid diffusion. The presence of $H_2$ and CO inhibits the $CO_2$ removal reaction by the water gas shift reaction and reduction of CaO above the temperature of $700^{\circ}C$. On the other hand, the $CO_2$ removal reaction was not affected below $600^{\circ}C$.

가연성 폐기물 가스화반응으로 생성되는 합성가스내의 이산화탄소를 제거하기 위하여, 열중량 분석기와 고정층 반응기내 산화칼슘을 이용한 이산화탄소의 분리반응 특성을 고찰하였다. 산화칼슘과 이산화탄소의 반응은 생성층 확산율속 영역에서 수축핵 반응모델의 속도식과 잘 일치하였으며 반응차수와 활성화 에너지는 각각 1.95, 104 kJ/mol 이었다. 산화칼슘과 이산화탄소의 반응성은 반응압력이 증가하여도 크게 변화하지 않았으며 이는 산화칼슘의 기공크기가 크고 표면고체확산에 의하여 반응이 진행되기 때문으로 사료된다. 합성가스내의 수소와 일산화탄소의 존재는 $700^{\circ}C$ 이상의 고온에서는 산화칼슘의 환원반응과 역수성가스반응에 의하여 이산화탄소 제거반응을 방해하지만 반응온도 $600^{\circ}C$ 이하에서는 이산화탄소 제거반응에 영향을 주지 않았다.

Keywords

References

  1. Applied Catalysis A General v.135 no.2 Migration and reduction of formate to form methanol on Cu/ZnO catalysts Ohshim, J.;Kwangdoeg, J.;Sunghwang, H. https://doi.org/10.1016/0926-860X(95)00256-1
  2. Journal of Catalysis v.71 no.2 Kellner, C.S. https://doi.org/10.1016/0021-9517(81)90232-3
  3. J. Catal. v.65 Herman, R.G.;Klier, K.;Simmons, G.W.;Finn, B.P.;Bulko, J.B.;Kobylinski
  4. Journal of Catalysis v.180 no.2 Rh/NaY: A Selective Catalyst for Direct Synthesis of Acetic Acid from Syngas Xu, B.Q.;Sachtler, M.H. https://doi.org/10.1006/jcat.1998.2287
  5. Journal of Catalysis v.175 no.2 Reaction and Surface Characterization Study of Higher Alcohol Synthesis Catalysts - VII. Cs- and Pd-Promoted 1:1 Zn/Cr Spinel Willian, S.E.;Gar, B.H.;David, M.M. https://doi.org/10.1006/jcat.1998.2005
  6. Journal of Catalysis v.101 no.1 Nancy, B.;John, G.;Ekerdt https://doi.org/10.1016/0021-9517(86)90232-0
  7. Industrial & Engineering Chemistry Fundamentals v.25 no.4 Haefner, D.L.;Thodos, G. https://doi.org/10.1021/i100024a007
  8. J. Catal. Chem. Eng. Aloke, K.G.;Amar, N.S.;Binoy, R.M.
  9. Gas Separation by Adsorption Process Yang, R.T.
  10. Otowa, T.;Yamada, M.;Tanibata, R.;Kawangami, M.;Vansant, E.F.;Dewolfs, R.
  11. J. Chem. Soc. v.63 Veley
  12. Chem. Zvesti v.12 Proks;Siske
  13. Trans. Faraday Soc. v.58 Owen, A.J.;Dedman, A.J.
  14. Applied Catalysis A General v.167 no.2 Effect of added basic metal oxides on CO2 adsorption on alumina at elevated temperatures Tatsuro, H.;Hiroaki, H.;Takehisa, F.;Yukio, K.;Toshiaki, M. https://doi.org/10.1016/S0926-860X(97)00318-9
  15. Chemical Engineering Research and Design v.77 no.1 Shimizu, T.;Hirama, T.;Hosoda, H.;Kitano, K.;Inagaki, M.;Tejima, K. https://doi.org/10.1205/026387699525882
  16. J. Am. Ceram. Soc. v.63 Dario, B.;Luigi, B.
  17. Chemical Reaction Engineering-Third Edition Levenspiel, Octave
  18. Fifth International Symposium on Combustion Yagi, S.;Kunii, D.
  19. AIChE Journal v.29 no.1 EFFECT OF THE PRODUCT LAYER ON THE KINETICS OF THE CO//2-LIME REACTION Bhatia, S.K.;Perlmutter, D.D. https://doi.org/10.1002/aic.690290111
  20. Korean J. Chem, Eng. v.35 Kang, S.H.;Lee, Y.W.;Kang, Y.;Han, K.H.;Lee, C.K.;Jim, G.T.
  21. Fuel v.77 no.11 Sorption and desorption of gases (CH4, CO2) on hard coal and active carbon at elevated pressures Nodzen'ski, A. https://doi.org/10.1016/S0016-2361(98)00022-2