A Study on the Synthsis of Acrylic Composite Particles and Investigation of their Characterization.

이순룡;설수덕

  • Published : 20020000

Abstract

Core-shell latexes were synthesized by sequential emulsion polymerization of methyl methacrylate (MMA), styrene (St), and ethyl acrylate (EA) in the presence of anionic surfactant, and the characteristics of these latexes were evaluated. The core latex had to be synthesized carefully to avoid the formation of secondary particles. The sequential polymerization method adopted for this synthesis took advantage of stabilizing particles grown during shell polymerization. In core-shell latex polymerization, to suppress the generation of new particles and to minimize the gelation during the shell polymerization, the amount of surfactant (Sodium dodecyl benzene sulfonate: SDBS) should be reduced to the minimum, 0.01 wt% and 0.02 wt% of SDBS to amount of monomer, respectively, when the Polymethyl methacrylate (PMMA) and Polystyrene (PSt) core latexes are prepared. In addition, the monomer pre-emulsion method is better than monomer-add method. The core-shell structure for composite latex synthesized was demonstrated by Particle Size Analysis (PSA), Differential Scanning Calorimeter (DSC), Transmission Electron Microscope (TEM), formability of film, and hydrolysis under NaOH solution.

Keywords

References

  1. Blankenship R, Kowalski A, 'Production of Core-sheath Polymer Particles Containing Voids, Resulting Product and Use,' U.S. Patent, 4,594,363, 1986
  2. Michael JD, J. Appl. Polym. Sci., 39, 2119, 1990
  3. Dos Santos FD, Fabre P, Drujon X, Meunier G, Leibler L, J. Polym. Sci. B: Polym. Phys., 38(23), 2989, 2000 https://doi.org/10.1002/1099-0488(20001201)38:23<2989::AID-POLB10>3.0.CO;2-D
  4. Grancio MR, Williams DJ, J. Polym. Sci., 8, 2733, 1970
  5. Grancio MR, Williams DJ, J. Polym. Sci., 8, 2617, 1970 https://doi.org/10.1002/pol.1970.150080927
  6. Keusch P, Williams DJ, J. Polym. Sci., 11, 143, 1973
  7. Kim SS, Chun BH, Park CJ, Yoon WL, Kim SH, HWAHAK KONGHAK, 38(5), 732, 2000
  8. Kim YS, Hwang GC, Bae SY, Yi SC, Korean J. Chem. Eng., 16(2), 161, 1999 https://doi.org/10.1007/BF02706830
  9. Lee CF, Young TH, Huang YH, Chiu WY, Polymer, 41(24), 8565, 2000 https://doi.org/10.1016/S0032-3861(00)00231-7
  10. Lee CF, Polymer, 41(4), 1337, 2000 https://doi.org/10.1016/S0032-3861(99)00281-5
  11. Lee DI, Ishikawa T, J. Polym. Sci. A: Polym. Chem., 21, 147, 1983 https://doi.org/10.1002/pol.1983.170210115
  12. Johnson MLW, Son SC, J. Appl. Polym. Sci., 27, 2033, 1982
  13. Okubo M, Izumi J, Colloids Surf. A: Physicochem. Eng. Asp., 153, 297, 1999 https://doi.org/10.1016/S0927-7757(98)00450-6
  14. Okubo M, Katsuta Y, Matsumoto T, J. Polym. Sci. Polym. Lett., 20, 45, 1982 https://doi.org/10.1002/pol.1982.130200107
  15. Okubo M, Katsuta Y, Inoue K, Nakamae K, Matsumoto T, 'Dynamic Viscoelastic Behavior of Composite Polymer Emulsion Film,' 16(7), 278, 1980
  16. Park JY, Kwon MH, Lee YS, Park OO, Korean J. Chem. Eng., 17(3), 262, 2000 https://doi.org/10.1007/BF02699037
  17. Song JH, Park SJ, Park SK, Lee MC, Lim JC, J. Korean Ind. Eng. Chem., 10(4), 523, 1999
  18. Paxton TR, J. Colloid Interface Sci., 31(1), 19, 1969
  19. Sarac AS, Prog. Polym. Sci., 24, 1149, 1999
  20. Song HS, Hyun JC, Korean J. Chem. Eng., 16(3), 316, 1999 https://doi.org/10.1007/BF02707119
  21. Williams DJ, Keusch P, J. Polym. Sci. A: Polym. Chem., 12, 2123, 1974 https://doi.org/10.1002/pol.1974.170120930