Low-Temperature RTCVD Growth and Characterization of Silicon-Carbide Nanorods Through Carbon Nanotubes

Md. SHAJAHAN;Y. H. MO;A. K. M. Fazle KIBRIA;K. C. KIM;K. S. NAHM;E. K. SUH

  • Published : 2002.11.01

Abstract

Silicon-carbide (SiC) nanorods were synthesized at 1100 $^{\circ}C$ through a two-step reaction scheme. Carbon nanotubes (CNTs) were first grown by using thermal decomposition of $C_2H_2$ over a Fe/Co metal catalyst loaded on a Si(100) wafer surface. The grown CNTs were then in-situ reacted with tetramethylsilane (TMS) to form SiC nanorods. The lengths and diameters of the grown SiC nanorods agreed with those of the CNTs used for the building blocks in the growth. The length of the SiC nanorods increased with increasing CNT growth time. The structural characterization using X-ray diffraction (XRD) and Fourier transform (FT)-Raman spectroscopy identified the growth of ${\beta}-SiC$ nanorods. A broad photoluminescence (PL) peak was observed at 2.32 eV from the SiC nanorods. The growth mechanism of the SiC nanorod is discussed in this work.

Keywords

References

  1. Carbon v.36 M. Lamy de la Chapelle;S. Lefrant;C. Journet;W. Maser;P. Bernier;A. Loiseau
  2. Nature v.388 C. Journet;W. K. Maser;P. Bernier;A. Loiseau;M. Lamy de la Chapelle;S. Lefrant;P. Deniard;R. Lee;J. E. Fischer
  3. Carbon v.36 B. Wei;J. Zhang;J. Liang;D. Wu
  4. J. Solid State Commun. v.111 S-L. Zhang;B-F. Zhu;F. Huang;Y. Yan;Er-yi Shang;S. Fan;W. Han
  5. Wear v.195 J. E. D. Afaghani;K. Yamaguchi;I. Horaguchi;T. Nakamoto
  6. J. Solid State Commun. v.115 A. Kassiba;M. Tabellout;S. Charpentier;N. Herlin;J. R. Emery
  7. J. Korean Phys. Soc. v.32 K. C. Kim;H. W. Shim;Y. H. Seo;E-K. Suh;K. S. Nahm;H. J. Lee
  8. J. Korean Phys. Soc. v.33 H. W. Shim;K. S. Nahm;E-K. Suh
  9. J. Korean Phys. Soc. v.34 Ho-Seung Lee;Sang-Wuk Lee;Dong Hyuk Shin;Hyun-Chang Park;Woong Jung
  10. J. Electrochem. Soc. v.146 Ing-Chi Leu;Min-Hsiung Hon;Yang-Ming Lu
  11. Nature v.375 H. Dai;E. W. Wong;Y. Z. Lu;S. Fan;C. M. Lieber
  12. J. Mater. Res. v.14 Jing Zhu;Shoushan Fan
  13. J. Crystal. Growth v.210 C. C. Tang;S. S. Fan;H. Y. Dang;J. H. Zhao;C. Zhang;P. Li;Q. Gu
  14. J. Vacuum Sci. Tech. A v.15 Y. H. Seo;K. S. Nahm;E-K. Suh;H. J. Lee;Y. G. Hwang
  15. J. Cata. Lett. v.71 A. K. M. F. Kibria;Y. H. Mo;K. S. Nahm
  16. Science v.267 S. Amelincks;X. B. Zhang;D. Bernaerts;X. F. Zhang;V. Ivanov;J. B. Nagy
  17. J. Syn. Metals v.122 Y. H. Mo;A. K. M. F. Kibria;K. S. Nahm
  18. Jpn. J. Appl. Phys. v.33 Y. H. Seo;K. S. Nahm;M. H. An;E. K. Suh;Y. H. Lee;K. B. Lee;H. J. Lee
  19. Thin Solid Films v.377-378 M. B. Yu;Rusil;S. F. Yoon;S. J. Xu;K. Chew;J. Cui;J. Ahn;Q. Zhang
  20. J. Alloys Comp. v.314 B. P. Tarasov;Yu. M. Shul'ga;V. N. Fokin;V. N. Vasilets;N. Yu. Shulga;D. V. Schur;V. A. Yartys
  21. J. Appl. Phys. v.85 Y. Sun;T. Miyasato;J. K. Wigmore
  22. Carbon v.39 X. K. Li;L. Liu;Y. X. Zhang;Sh. D. Shen;Sh. Ge;L. Ch. Ling
  23. Solid State Ionics v.120 M. Soliman Selim;G. Turky;M. A. Shouman;G. A. El-Shobaky
  24. Inst. Phys. Conf. Ser. v.145 Y. H. Seo;K. S. Nahm;E-K. Suh;Y. H. Lee;H. J. Lee;Y. G. Hwang
  25. J. Non-Cryst. Sol. v.202 M. Ohmukai;H. Naito;M. Okuda;K. Kurosawa
  26. J. Korean Phys. Soc. v.37 N. I. Cho;Y. M. Kim;C. Hong;H. B. Chae;C. K. Kim;B. T. Lee
  27. J. Mat. Sci. Eng. B v.75 Z. M. Chen;J. P. Ma;M. B. Yu;J. N. Wang;W. K. Ge;P. W. Woo
  28. J. Crystal Growth v.167 Ing-Chi Leu;Yang-Ming Lu;Min-Hsiung Hon
  29. J. Solid State Ionics v.95 C. Real;D. Alcala;J. M. Criado