Crack Opening Behavior of Perpetrated Crack Under Fatigue Load

  • Nam, Ki-Woo (College of Engineering, Pukyong National University, 100, Yongdang-dong, Nam-gu, Busan 608-739) ;
  • Ahn, Seok-Hwan (College of Engineering, Pukyong National University, 100, Yongdang-dong, Nam-gu, Busan 608-739)
  • Published : 2002.01.01

Abstract

The leak-before-break (LBB) behaviors of a structural component under high and low fatigue loads are an important problem in nuclear power plants, liquid nitrogen gas tankers and chemical plants. This paper is an experimental study to evaluate the crack opening behavior after penetration for plate and pipe specimens. Crack opening displacement after penetration under low fatigue load could be satisfactorily determined at the center of the plate thickness regardless of the specimen size. In the case of high fatigue load, it is shown that the crack opening displacement at the center of a penetrated crack carl be derived using the gross stress, $\sigma$/sug G/, and the front surface crack length, a$\_$s/, together with the back surface crack length, a$\_$b/.

Keywords

References

  1. Ando, K., Fujibayashi, S., Nam, K. W., Takahashi, M. and Ogura, N., 1987, 'The Fatigue Life and Crack Through-Thickness Behaviour of a Surface-Cracked Plate (for the Case of Tensile Load),' JSME Int. J., Vol. 30, pp. 1898-1905 https://doi.org/10.1299/jsme1987.30.1898
  2. ASME. 1995, Boiler and Pressure Vessel Code Sec. XI.
  3. Bergman, M., 1995, 'Stress Intensity Factors for Circumferential Surface Cracks in Pipes,' Fatigue Fract. Engng Mater. Struct., Vol. 18, pp. 1155-1172 https://doi.org/10.1111/j.1460-2695.1995.tb00845.x
  4. Choi, C. Y., Kwon, J. D., and Sul, I. C., 2001, 'Application of the Leak Before Break(LBB) Concept to a Heat Exchanger in a Nuclear Power Plant,' KSME International Journal, Vol. 15, pp. 10-20
  5. Efits, J. and Liebowitz, H., 1972, 'On the Modified Westergaard Equations for Certain Plane Crack Problems,' Int. J. Fract. Mech., Vol. 8, pp. 383-392 https://doi.org/10.1007/BF00191100
  6. Hasegawa, K., Sakata, S., Simizu, T. and Shida, S., 1983, 'Prediction of Fracture Tolerances for Stainless Steel Pipes with Circumferential Cracks,' ASME Int. J. Press. Ves. Piping, Vol. 95, pp. 65-78
  7. Hasegawa, K., Okamoto, A., Yokota, H., Yamamoto, Y., Shibata, K., Oshibe, T. and Matsumura, K., 1991, 'Crack Opening Area of Pressurized Pipe for Leak-Before-Break Evaluation,' JSME Int. J., Vol. 34, pp. 332-338
  8. Hodulak, L., Kordisch, H., Kunzelamnn, S. and Sommer, E., 1979, 'Growth of Part-Through Cracks,' ASTM STP 677, pp. 399-410
  9. Huh, N. S., Kwak, D. O., Kim, Y. J., Yu, Y. J. and Pyo, C. R., 2000, 'Effect of Nozzle on Leak-Before-Break Analysis Result of Nuclear Piping,' J. KSME. Kor., Vol. 24, pp. 2796-2803
  10. Kashima, K., 1986, 'Analysis of Leak-Before-Break for Stainless Steel Piping in Light Water Reactor. Doctoral thesis, Tokyo University
  11. Kawahara, M. and Kurihara, M., 1975, 'A Preliminary Study on Surface Crack Growth in a Combined Tensile and Bending Fatigue Process,' J. Soc. Naval Arch. Jpn., Vol. 137, pp. 297-306
  12. Kim, Y. J., Huh, N. S. and Kim, Y. J., 2001, 'New Engineering Estimation Method of J-Integral and COD for Circumferential Through-Wall Cracked Pipes,' J. KSME. Kor., Vol. 25, pp. 548-553
  13. Miyoshi, T. and Yoshida, Y., 1988, 'Analysis of Stress Intensity Factor of Surface Cracks in Pre and Post Penetration,' Jap. Soc. Mech. Engrs., Vol. 54, pp. 1771-1777 https://doi.org/10.1299/kikaia.54.1771
  14. Nam, K. W., Ando, K. and Ogura, N., 1993, 'The Effect of Specimen Size on the Behavior of Penetrating Fatigue Cracks,' Fatigue Fract. Engng Mater. Struct., Vol. 16, pp. 767-779 https://doi.org/10.1111/j.1460-2695.1993.tb00118.x
  15. Nam, K. W., 1991, 'The Fatigue Life and Crack Penetration Behavior of High-Strength Steel' J. KSME. Kor., Vol. 15, pp. 1990-2001
  16. Nam, K. W., Ando, K. and Ogura, N., 1995, 'Surface Fatigue Crack Life and Penetration Behavior of Stress Concentration Specimen,' Engng Fract. Mech., Vol. 51, pp. 161-166 https://doi.org/10.1016/0013-7944(94)00235-A
  17. Nam, K. W., Ando, K., Ogura, N. and Matui, K., 1994, 'Fatigue Life and Penetration Behaviour of a Surfaced-Cracked Plate under Combined Tension and Bending,' Fatigue Fract. Engng Mater. Struct., Vol. 17, pp. 873-882 https://doi.org/10.1111/j.1460-2695.1994.tb00817.x
  18. Newman, J. C. Jr. and Raju, I. S., 1981, 'An Empirical Stress Intensity Factor Equation for the Surface Crack,' Engng Fract. Mech., Vol. 15, pp. 185-192 https://doi.org/10.1016/0013-7944(81)90116-8
  19. Sakai, T., Takashima, H., atsumae, H. and Yajima, H., 1975, 'Studies on Nine Percent Nickel Steel for Liquefied Natural Gas Carriers,' ASTM STP 579, pp. 205-237
  20. Shibata, K., Yokoyama, N., Ohba, T., Kawamura, T. and Miyazono, S., 1986, 'Growth Evaluation of Fatigue Cracks from Multiple Surface Flaws(Ⅱ),' J. Atomic Energy Soc. Jpn., Vol. 28, pp. 258-265 https://doi.org/10.3327/jaesj.28.258
  21. Yano, T., Matsushima, E. and Okamoto, A., 1987, 'Leak Flow Rate from Through-Wall Crack in Pipe,' In The 2nd ASME-JSME Thermal Engineering Joint Conference, Hawaii