Recent Development Trends of Cation Exchange Membrane Materials

양이온교환막 소재 개발 동향

  • 이충섭 (한남대학교 공과대학 화학공학과) ;
  • 신현수 (한남대학교 공과대학 화학공학과) ;
  • 전지현 (한남대학교 공과대학 화학공학과) ;
  • 정선영 (한남대학교 공과대학 화학공학과) ;
  • 임지원 (한남대학교 공과대학 화학공학과)
  • Published : 2002.03.01

Abstract

Currently, the commercialized cation exchange membranes have the excellent performance and stability, however their costs are very expensive and they are not still optimized for the several application areas. A number of membranenologists are focused to solve the problems on the development of novel membrane to be applicable to each membrane field. The present will deal with the introduction of the existing membrane materials and their performances.

양이온만을 선택적으로 투과하는 양이온교환막의 응용분양에는 electrodialysis, deffusion dialysis, reverse osmosis, membrane electrolysis, membrance fuel cell 등이 있다. 현재 사용화된 양이온교환막들은 좋은 성능과 안정성을 가지고 있지만 가격이 너무 비싸고 일부응용분야에 최적화 되지 않은 문제를 가지고 있다. 이를 해결하기 위해 많은 연구가들은 저렴하고 생산이 용이하며 각 응용분야에 적용 가능한 여러 가지 양이온교환막의 소재에 대한 연구를 진행하여 왔다. 그 소재들의 소개와 이를 이용한 양이온교환막의 성능과 특성에 대하여 기술하였다.

Keywords

References

  1. J. Member. Sci. v.153 Comparative investigations of ion-exchange membrances S. Koter;P. Piotrowski;J. Kerres https://doi.org/10.1016/S0376-7388(98)00242-7
  2. 막분리 기초
  3. J. Membr. Sci. v.166 Ionomeric membranes based on partially sulfonated poly styrene:synthesis, proton conduction and methanol permeation N. Carretta;V. Tricoli;F. Picchioni https://doi.org/10.1016/S0376-7388(99)00258-6
  4. J. Membr. Sci. v.160 Sulfonated polyimides as proton conductor exchange memberanes. Physicochemical properties and separation H+/Mz+ by electodialysis comparison with a perfluorosulfonic membrane E. Vallejo;G. Pourcelly;C. Cavach;R. Mercier;M. Pineri https://doi.org/10.1016/S0376-7388(99)00070-8
  5. J. Electrochem. Soc. v.145 no.11 Proton and Methanol Transport in Poly(perfluorosulfonate) Membranes Containing Cs+ and H+ Cations V. Tricoli
  6. J. Membr. Sci. v.199 Cation permeable membranes from blends of sulfanated poly (ether ketone) and poly(ether sulfone) F. G. Wilhelm;I. G. MPunt;N. F. A. van der Vegt;H. Strathnamm;M. Wessling https://doi.org/10.1016/S0376-7388(01)00695-0
  7. J. Membr. Sci. v.173 Proton conduction composite membranes form polyether ether ketone and heteropolyacids for fuel cell applications S. M. J. Zaidi;S. D. Mikhailenko;G. P. Rovertson;M. D. Guiver;S. Kaliaguine https://doi.org/10.1016/S0376-7388(00)00345-8
  8. J. Membr. Sci. v.137 Application of new sulfonated ionomer membranes in the separation of pentene and pentane by facilitated transport A. J. van Zyl;J. A. Kerres;W. Cui;M. Junginger https://doi.org/10.1016/S0376-7388(97)00190-7
  9. Separation and Purification Technology v.14 Development and characterization of ion-exchange polymer blend membranes W. Cui;J. Kerres;G. Eigenberger https://doi.org/10.1016/S1383-5866(98)00069-0
  10. J. Membr. Sci. v.154 Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes Q. Guo;P. N. Pintauro;H. Tang;Sally O'Connor https://doi.org/10.1016/S0376-7388(98)00282-8
  11. J. Membr. Sci. v.162 Coion exclusion properties of polyphosphazene ionexchange membranes L. Jones;P. N. Pintauro;H. Tang https://doi.org/10.1016/S0376-7388(99)00132-5
  12. J. Appl. Electochem v.29 Effect of crosslinking on the physicochemical properties of proton conduction PVDF-g-PSSA membranes T. Lehtinen;G. Sundholm;F. Sundholm
  13. J. Membr. Sci. v.147 The transport of cu (Ⅱ) through a sulfonated styrene/divinylbenzene copolymer membrane L. Picincu;D. Pletcher https://doi.org/10.1016/S0376-7388(98)00128-8
  14. Solid State Ionics v.97 Investigation of radiation-grafted PVDF-g-polystyrene-sulfonic-acid ion exchange membranes for use in hydrogen oxygen fuel cells S. D. Flint;R. C. T. Slade https://doi.org/10.1016/S0167-2738(97)00037-4
  15. Polymer v.42 Solube sulfonated naphthalenic polyimides as materials for proton exchange membranes C. Genies;R. Mercier;B. Sillion;N. Cornet;G. Gebel;M. Pineri https://doi.org/10.1016/S0032-3861(00)00384-0
  16. Separation and Purification Technology v.22-23 Influence of the structure of sulfonated polyimide membranes on transport properties N. Cornet;G. Beaudoing;G. Gebel https://doi.org/10.1016/S1383-5866(00)00184-2
  17. J. Membr. Sci. v.156 Ion exchange membrane based on block copolymers Part Ⅲ:preparation of cation exchange membrane Gab-Jin Hwang;H. Ohta;T. Nagai https://doi.org/10.1016/S0376-7388(98)00331-7
  18. J. Membr. Sci. v.139 Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU Crosslinked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes J. Kerres;W. Cui;Martin Junginger https://doi.org/10.1016/S0376-7388(97)00254-8
  19. J. Membr. Sci. v.139 Development and characterization of cross-linked ionomer membranes based upon sulfinated and sulfonated PSU Crosslinked PSU blend membranes by disportionation of sulfinic acid groups J. Kerres;W. Cui;R. Disson;W. Neubrand https://doi.org/10.1016/S0376-7388(97)00253-6
  20. J. Membr. Sci. v.185 Ionomeric membranes for proton exchange membrane fuel cell (PEMFC):sulfonated polysulfone associated with phosphatoantimonic acid P. Genova-Dimitrova;B. Baradie;D. Foscallo;C. Poinsignon;J. Y. Sanchez https://doi.org/10.1016/S0376-7388(00)00634-7
  21. Reactive & Functional Polymers v.44 Studies on heterogeneous cation-exchange membranes P. V. Vyas;B. G. Shah;G. S. Trivedi;P. Ray;S. K. Adhikary;R. Rangarajan https://doi.org/10.1016/S1381-5148(99)00084-X
  22. J. Membr. Sci. v.154 Pervaporation membranes in direct methanol fuel cells B. S. Pivovar;E. L. Cussler https://doi.org/10.1016/S0376-7388(98)00264-6