DOI QR코드

DOI QR Code

Hypolipidemic Effects of Peptide Fractions of Casein on Serum Lipids in Rats Fed Normal or High Fat Diet

정상 또는 고지방식을 섭취한 흰쥐에서 Casein 펩타이드 분획물이 혈청 지질농도에 미치는 영향

  • 오주환 (서울대학교 식품영양학과) ;
  • 이연숙 (서울대학교 식품영양학과)
  • Published : 2002.04.01

Abstract

In the recent studies, many researchers are interested in foods as functional components rather than nutrient sources. Cow's milk is considered as an excellent food sources because of its many nutrients. Casein is a major milk protein and has been reported to have hyperlipidemic and hypercholesterolemic effects. But several reporters have suggested that peptide fractions and hydrolysate of casein have hypolipidemic effects differing from intact protein, casein. Therefore, the objective of the study was to investigate how the casein peptide fractions affect lipid metabolism in rats fed normal or high fat diets. The peptide fractions and hydrolysate of casein were obtained by casein hydrolysis with trypsin. The male rats (Sprague-Dawley), weighing approximately 150 g, were fed each experimental diet containing casein (CAS), casein hydrolysate (CH), casein hydrolysate precipitate (Cpt) and two kinds of peptide fractions (CL & CB) for three weeks, respectively. In the exit I, the male rats were fed normal fat diets (7% soybean oil & cholesterol-free; Expt. I), and in the expt II, fed high fat diets (18% beef tallow & 1% cholesterol; Expt. II). Crude protein contents were calculated from nitrogen contents. Amino acid composition of each fraction was also analyzed. The concentration of total lipid, total cholesterol and triglyceride in serum, liver and feces were measured. As the results of study, tole rats fed peptide fractions with normal fat diets (Expt. I) had no effects on total lipid, total cholesterol and triglyceride concentration in serum and liver and fecal excretion. However, in the rats fed hydrophobic casein peptide fractions (CB) with high fat diet, fecal lipids excretion were significantly increased and the lipids concentration of serum and those of liver tended to decrease, numerically.

본 연구에서는 casein 펩타이드 분획물이 정상 및 고지방식을 섭취한 흰쥐에서의 혈청 및 조직의 지질 농도에 미치는 섭취효과를 검토하고자 하였다. 정상 지방식이 (7% soybean oil & cholesterol-free; Expt I)를 섭취한 흰쥐는 정상 혈청 지질농도를 나타내는 것으로, 분배설량이 약간 증가하는 경향을 나타내긴 하였지만 이때 casein 펩타이드 분획물군의 혈청,간조직의 지질농도에 대한 효과는 유의적인 차이가 없었다. 하지만, 순환기계질환의 주요 인자인 HDL/LDL비는 친.소수성 펩타이드에서 유의적으로 높은 경향을 나타내었다. 고지방 콜레스테롤식이 (18% beef tallow & 1% cholesterol; Expt II)를 급여하였을 경우, 친.소수성 펩타이드 분획물군에서 분중으로의 총지질, 총콜레스테롤 및 중성지방의 배설량이 유의 적 (p<0.05)으로 또는 증가하는 경향을 나타내었다. 이런 결과, 고지방식이를 급여했을 때 친.소수성펩타이드 분획물군이 casein군에 비해 혈중 및 간조직 중의 지질 농도가 낮아지는 경향을 나타냈다. 또한 HDL/LDL비도 casein군에 비해 친.소수성 펩타이드 분획물군에서 높게 관찰되는 것으로, 이는 고 혈증 위험요소를 저하시키는 효과가 있는 것으로 사료되었다. 친.소수성 펩타이드 분획물(CL & CB)의 아미노산 조성 결과, 친.소수성 펩타이드 식이의 glycine과 methionine함량은 casein 식이의 조성과 거의 비슷한데, arginine과 lysine함량은 casein 식이의 조성과 상당히 달랐다. 또한 혈중 지질농도를 낮추는 것으로 보고되어지는 arginine/lysine 비와 glycine/methionine 비는 친.소수성 펩타이드 분획물 식이(CL & CB)에서 낮게 관찰되었다. 이러한 결과는 동물실험 결과와 같이 고찰해볼 때, 아미노산 조성이 혈중 및 조직 중의 지질저하 효과에 미치는 영향이 그다지 크지 않은 것으로 사료되었고, 앞으로 이에 대한 연구가 더욱 필요하였다. 친.소수성 casein 펩타이드 분획물의 지질 대사에 미치는 영향을 관찰하여 보았을 때, 고지혈증 및 고콜레스테롤혈증 흰쥐에서 혈중 및 간조직의 지질함량을 저하 시키는 효과가 있는 것으로 나타났다. 이에 가능한 기전으로는 분중으로의 지질 배설량을 증가시킨 것에 기인한 것으로 해석되었으며, 섭취기간이 길어질수록 효과가 확실해질 것으로 기대되었다. 또한 casein 펩타이드 분획물의 아미노산 조성비의 차이라기보다는 펩타이드 자체의 효과임이 시사되었다.

Keywords

References

  1. Lee YS, Noguchi T, Naito H. 1983. Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture. Role of casein phosphopeptides. Br J Nutr 49: 67-76. https://doi.org/10.1079/BJN19830012
  2. Lee YS, Park J, Naito H. 1992. Supplemental effect of caseinphosphopeptides (CPP) on the calcium balance of growing rats. J Japan Soc Nutr Food Sci 45: 155-162. https://doi.org/10.4327/jsnfs.45.155
  3. Ono T, Takagi Y, Kunishi I. 1998. Casein phosphopeptides from casein micelles by successive digestion with pepsin and trypsin. Biosci Biotechnol Biochem 62: 16-21. https://doi.org/10.1271/bbb.62.16
  4. Maeno M, Yamamoto N, Takano T. 1996. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase for Lactobacillus helveticus CP790. J Dairy Sci 79: 1316-1321. https://doi.org/10.3168/jds.S0022-0302(96)76487-1
  5. Yamauchi F, Suetsuna K. 1993. Immunological effects of dietary peptide derived from soybean protein. J Nutr Biochem 4: 450-457. https://doi.org/10.1016/0955-2863(93)90062-2
  6. Chernikov MP, Stan EV. 1983. Physiological activity of prouducts of limited (partial) $\kappa$-casein proteolysis. XXI International Dairy Congress. Dairy Sci Abstract 45: 402.
  7. Van der Meer R. 1983. Is the hypercholesterolemic effect of dietary casein related to its phosphorylation state? Atherosclerosis 49: 339-341. https://doi.org/10.1016/0021-9150(83)90145-4
  8. Carroll KK. 1991. Review of clinical studies on cholesterol-lowering response to soy protein. J Am Diet Assoc 91: 820-827.
  9. Bassat M, Mokady S. 1985. The effect of amino-acid supplemented wheat gluten on cholesterol metabolism in the rat. Br J Nutr 53: 25-30. https://doi.org/10.1079/BJN19850006
  10. Kayashita J, Shimaoka I, Nakajyoh M. 1995. Hypocholesterolemic effect of buckwheat protein extract in rats fed cholesterol enriched diets. Nutr Res 15: 691-698. https://doi.org/10.1016/0271-5317(95)00036-I
  11. Kritchevsky D, Tepper SA, Czarnecki SK, Klurfeld DM. 1982. Atherogenicity of animal and vegetable protein. Athersclerosis 41: 429-431. https://doi.org/10.1016/0021-9150(82)90208-8
  12. Kurowska EM, Carroll KK. 1994. Hypercholesterolemic responses in rabbits to selected groups of dietary essential amino acids. J Nutr 124: 364-370. https://doi.org/10.1093/jn/124.3.364
  13. Morita T, Oh-hashi A, Takei K, Ikai M, Kasaoka S, Kiriyama S. 1997. Cholesterol-lowering effects of soybean, potato and rice proteins depend on their low methionine contents in rats fed a cholesterol-free purified diet. J Nutr 127: 470-477. https://doi.org/10.1093/jn/127.3.470
  14. Huff MW, Carroll KK. 1980. Effects of dietary of dietary protein on turnover, oxidation and absorption of cholesterol and on steroid excretion in rabbit. J Lipid Res 21: 546-558.
  15. Eaton A, Klassen M. 1976. Effect of acute administration of taurocholic and taurochenodeoxycholic acid on billiary lipid excretion in the rat. Proc Soc Experimental Biol Med 151: 198-202. https://doi.org/10.3181/00379727-151-39173
  16. Eastwood MA, Hamilton D. 1968. Studies on the adsorption of bile salts to nonabsorbed components of diet. Biochim biophys Acta 152: 165-173. https://doi.org/10.1016/0005-2760(68)90018-0
  17. West CE, Spaij CJK, Clous WM, Twisk SP, Goertz MPH, Hubard RW, Kuyenhoven MW, Van der Meer R, Roszkowski WF, Sanchez A, Beynen AC. 1989. Comparison of the hypocholesterolemic effects of dietary soy bean protein with those of formaldehyde-treated casein in rabbits. J Nutr 119: 843-856. https://doi.org/10.1093/jn/119.6.843
  18. Lefevre A, Schbeeman A. 1982. Comparison of the mechanisms proposed to explain the hypocholesterolemic effect of soybean protein versus casein in experimental animals. Federation Proceeding 41: 720-729.
  19. Yashiro A, Oda S, Sugano M. 1985. Hypocholesterolemic effect of soybean protein in rats and mice after peptic digestion. J Nutr 115: 1325-1336. https://doi.org/10.1093/jn/115.10.1325
  20. Lee YS, Park YH, O JH, Kim TJ, Lee HS. 1997. Effects of protien hydrolysates on blood and liver lipids in rats fed fat-enriched diet. K J Nutr 30: 614-621.
  21. Asato L, Kina T, Sugiyama M, Shimabukuro T, Yamamoto S. 1994. Effect of dietary peptides on plasma lipids and its mechanism studied in rats and mice. Nutr Res 14: 1661-1669. https://doi.org/10.1016/S0271-5317(05)80321-5
  22. Fringe CS, Dunn RM. 1980. The colorimetric method for the determination of serum total lipids based on the sulfo-phospho-vanillin reaction. Am J Clin Patho 53: 89-92.
  23. Friedwald WT, Levy RT, Fridrickson DS. 1972. Estimation of the concentration of low density lipoprotein cholesterol in plasma without the use of the preparative ultracentrifuge. Clin Nutr 18: 499-502.
  24. Folch J, Less M, Stanley GHS. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-502.
  25. Biggs HG, Erikson MJ, Wells RM. 1975. A manual colorimetric assay of triglycerides in serum. Clin Chem 21: 437-441.
  26. Zlatkis A, Zak, B. 1969. Study of a new cholesterol reagent. Anal Biochem 29: 143-146 https://doi.org/10.1016/0003-2697(69)90017-7
  27. Kim JH. 1991. Study on the effects of pepsin hydrolysate of casein on serum lipids in rats. PhD Thesis. Seoul National University, Korea.
  28. Okida T, Sugano M. 1989. Effects of the type and level of dietary proteins on the plasma lipids fatty acid profiles and fecal steroid excretion in rats. Agri Biol Chem 53: 659-666. https://doi.org/10.1271/bbb1961.53.659
  29. Sugano M, Yamada Y, Yoshida K, Hashimoto Y, Matsuo T, Kimoto M. 1990. Cholesterol-lowering activity of various undigested fractions of soybean protein in rats. J Nutr 120: 977-985. https://doi.org/10.1093/jn/120.9.977
  30. Lee YS, Koh JS. 1994. Effects of dietary soy protein and calcium on blood and tissue lipids in rats fed fat-enriched diet. K J Nutr 7: 3-11.
  31. Terpstra AHM, Sanchez-Muriz FJ. 1982. Time course of the development of hypercholesterolemia in rabbits fed semipurified diets containing casein or soybean protein. Atherosclerosis 39: 217-222.

Cited by

  1. Effects of Milk with Boiled-Dried Large Anchovy, Calcium-Fortifying Materials and Fortified-Calcium Milk on Calcium Absorption Rate and Bone Metabolism in Rats vol.37, pp.4, 2008, https://doi.org/10.3746/jkfn.2008.37.4.459
  2. Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein Alcalase hydrolysates vol.40, pp.6, 2007, https://doi.org/10.1016/j.foodres.2007.01.005
  3. The hypolipidemic effect and antithrombotic activity of Mucuna pruriens protein hydrolysates vol.7, pp.1, 2016, https://doi.org/10.1039/C5FO01012H