SOFTWARE ARCHITECTURE FOR ADAPTIVE COLLISION AVOIDANCE SYSTEMS

  • Blum, Jeremy (Research Associate, Center for Intelligent Systems Research, George Washington University, Virginia Campus) ;
  • Eskandarian, Azim (Director, Center for Intelligent Systems research, George Washington University, Virginia Campus)
  • Published : 2002.06.01

Abstract

Emergent Collision Avoidance Systems (CAS's) are beginning to assist drivers by performing specific tasks and extending the limits of driver's perception. As CAS's evolve from simple systems handling discrete tasks to complex systems managing interrelated driving tasks, the risk of failure from hidden causes greatly increases. The successful implementation of such a complex system depends upon a robust software architecture. Host of the difficulty in implementing system arises from interconnections between the components. The CAS architecture presented in this paper focuses on these interconnections to mitigate this problem. Moreover, by constructing the GAS architecture through the composition of existing architectural styles, the resulting system will exhibit predictable qualities. Some of the qualities represent limitations that translate into constraints on the system. Others are beneficial aspects that satisfy stakeholder requirements .

Keywords

References

  1. Abd-Allah, A. (1995). Composing Heterogeneous Software Architectures. PhD Dissertation: University of Southem California
  2. Araki. H., Yamada, K., Hiroshima, Y. and Ito, T. (1996). Development of a Rear-End Collision Avoidance System. Proceedings of the 1996 IEEE Intelligent Vehicles Symposium, 224-229
  3. Barber, P. and Clarke, N. (1998). Advanced Collision Warning Systems. IEE Colloquium on Industrial Auto-mation and Control: Applications in the Automotive Industry, Digest No. 1998/234, 2/1-9
  4. Behringer, R. and Maurer, M. (1996). Results on Visual Road Recognition for Road Vehicle Guidance. Proceedings of the 1996 IEEE Intelligent Vehicles Symposium, 415-420
  5. BMW. (1998). Driver Assistance at BMW. http://www. telematik.de/bmw/english/fe fah.htm
  6. Burmeister, B., Haddadi, A. and Matylis, G. (1997). Application of multi-agent systems in traffic and transportation. IEE Proceedings of Software Eng-ineering, 144, 1, 51-60 https://doi.org/10.1049/ip-sen:19971023
  7. Carlson, J. and Doyle, J. (2000). Highly optimized tolerance: Robustness and design in complex systems. Physical Review Letters 84, 11, 2529-2532 https://doi.org/10.1103/PhysRevLett.84.2529
  8. Choi, S. B. (2000). The design of a look-down feedback adaptive controller for the lateral control of front-wheel-steering autonomous highway vehicles. IEEE Transactions on Vehicular Technology', 49, 6
  9. Craig, I. (1995). Btackboard Svstems. Ablex Publishing Corporation, New jersey
  10. Eaton. (1998). Eaton VORAD Introduces SmartCmise: World's First Look at Radar-based Adaptive Cruise Control.http://truck.eaton.com/na/news_about_us/news re1eases/1998/re1eases/641998 srnart.htm
  11. Eskandahan, A. and Thihez, S. (1998). Collision avoidance using a cerebellar model arithmetic computer neuralnetwork. Computer-Aided Civil and Infrastructure Engineering 13, 303-314
  12. Fangqin, L. and Feng, L. (1999). Fuzzy Control of Automatic Automobile Obstacle Avoiding. Proceedings of the IEEE International Vehicle Electronics Conference, 282-285
  13. Fildes, A., Leening, A. and Corrigan, J. (1990). Speed Perception 2: Drivers' judgements ofSafety and Speed on Rural Straight and Curved Roads and for Different Following Distances. Federal Office of Road Safety, Australia, Contract Report 60
  14. Freund, D. M., K-nipling, R. R., Landsburg, A. C., Simmons, R. R. and Thoma, G. R. (1995). A Holistic Approach to Operator Alertness Research. Paper Presented at the Transportation Research Board, 74th Annual Meeting, Washington, DC
  15. Garlan, C. and Shaw, M. (1993). An introduction to software architecture. [Book Chapter] Advances in Software Engineering and Knowledge Ensineerine. Singapore: World Scientific, 1-39
  16. Gish, K. W., Staplin, L., Stewart, J. and Perel, M. (1999). Sensory and cognitive factors affecting automotive head-up display effectiveness, Transportation Research Record 1694,10-19
  17. GM. (2001). Cadillac Vizon Offers Unprecedented Safety Technology. http://media.gm.com/division/cadillac/concept vehicles/vizon technology.html
  18. Goodrich, M. A. and Boer, E. R. (2000). Designing human-centered automation: Tradeoffs in collision avoidance system design. IEEE Transactions on Intelligent transportation Systems 1,1, 40-54 https://doi.org/10.1109/6979.869020
  19. Gorjecstani, A., Shankwitz, C. and Donath, M. (2000), Impedence Control for Truck Collision Avoidance, Proceedings of the American Control Conference. Chicago, IL
  20. Groeger, J. A., Alm, H., Haller, R. and Michon, J. A. (1993). Impact and acceptance. [Book Chapter] Generic Intelligent Driver Support, J.A. Michon, ed., Wash-ington DC: Taylor & Francis, 217-227
  21. Hayami, M., Ohta, T. and Tajima, T. (1999). The Development of Dangerous Zone Avoidance Control System in UTMS. 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, 49-54
  22. Hendersen, S. and Suen, S. L. (1999). Intelligent Trans-portation Systems: A Two-Edged Sword for Older Drivers?, Transportation Research Record 1679, 58-63
  23. Hoffman, A., Horn, E., Keller, W., Renzel, K. and Schmidt, M. (1996). The Field of Software Architecture. Tech-nical University of Munich, Technical Report TUM-I9641
  24. Homik, K., Stinchombe, M. and White, H. (1989). MUIti-layered feedforward networks are universal appro-ximators. Neural Networks 2, 5, 359-366
  25. Hu, J., Lygeros, J., Prandini, M. and Sastry, S. (1999) A Probalistic Framework for Highway Safety Analysis. Proceedings of the 3 8th Conference on Decision & Control, Phoenix, AZ, 3734-3739
  26. Jacoy, E. H. and Knight, J. R. (1998). Adapting Radar and Tracking Technology to an On-Board Automotive Collision Waming System. The AIAA/IEEE/SAE IEEE Digital Avionics Systems Conference 2,124, 1-8
  27. Kamiya, H., Fujita, Y., Tsuruga, T, Nakamura, Y., Matsuda, S. and Enomoto, K. (1996) Intelligent Technologies of Honda ASV, Proceedings of the 1996 IEEE Intelligent Vehicles Symposium, 236-241
  28. Kao, J. H., Hemmerle, J. S. and Prinz, F. B. (1996). Collision avoidance using asynchronous teams. 1996 IEEE International Conference on Robotics and Auto-mation 2, 1093-1100
  29. McKnight, A. J. and Adams, B. B. (1970). Driver Edu-cation Task Analysis Alexandria, VA: Human Resources Research Organization; Springfield, VA: Reproduced by the National Technical Information Service
  30. McLoughlin, H. B., Michon, J. A., van Winsum, W. and Webster, E. (1993). GIDS intelligence. [Book Chapter] Generic Intelligent Driver Support. J.A. Michon, ed., Washington DC: Taylor & Francis, 89-112
  31. Menig, P. and Coverdill, C. (1999). Transportation Re-corders on Commercial Vehicles, 1999 NTSB Inter-national Symposium on Transportation Recorders
  32. Mercedes-Benz. (2001). Mercedes-Benz CL 500, http://www.m-benz.com/mode1s/c1500-01 .html
  33. Michon, J. A. and Smiley, A. (1993). Introduction: A guide to GIDS. [Book Chapter] Generic Intelligent Driver Support, J.A. Michon, ed., Washington DC: Taylor & Francis, 3-18
  34. Mimuro, T., Miichi, Y., Maemura, T. and Hayafune, K. (1996). Functions and Devices of Mitsubishi Active Safety ASV. Proceedings of the 1996 IEEE Intelligent Vehicles Symposium, 248-253
  35. Moray, N. (1990). Designing for transportation safety in the light of perception, attention, and mental models, Ereonomics 33, 10/11, 1201-1213 https://doi.org/10.1080/00140139008925326
  36. Perry, C. and Wolf, A. (1992). foundations for the Study of Software Architecture. Software Engineering Notes 17,4,40-52 https://doi.org/10.1145/141874.141884
  37. Sayed, R. and Eskandarian, A. (2001). Monitoring Drowsy Drivers with Artificial Neural Network, Miami Beach, FL: Intelligent Transportation Society of America 2001, 1-12
  38. Schmitt, M., Ullrich, T- Tolle, H. (1994). Associative Datafields in Automotive Control, Proceedings of the Third IEEE Conference in Control Applications 2, 1239-1244
  39. Shladover, S. E. (1999). Intellectual challenges to deployability of advanced vehicle control and safety systems, transportation Research Record 1679, 119-125
  40. Shields, T. R. and Roser, M. (2000). Trends in Auto-motive Use of ITS Technologies for Safety. Seoul 2000 FISITA World Automotive Congress, Seoul, Korea, 1-4
  41. Sidani, T. A. and Gonzalez, A. J. (2000). A framework for learning implicit expert knowledge through observation, transactions of the Society for Computer Simulation International 17, 2, 54-72
  42. Sobottka, K. and Bunke, H. (1999). Anytime Behavior for Obstacle Tracking. 1999 IEEE/IEEJ/JSAI Inter-national Conference on Intelligent Transportation Systems, 368-373
  43. Sourour, E. and Nakagawa, M. (1999). Mutual decent-ralized synchronization for intel-vehicle Communi-cations. IEEE transactions on Vehicular Technology 48, 6, 2015-2027 https://doi.org/10.1109/25.806794
  44. Swaroo, P. D. and Huandra, R. (1998). Intelligent cruise control design based on a traffic flow specification. Vehicle Systems Dynamics 30, 319-344 https://doi.org/10.1080/00423119808969455
  45. Talukdar, S. N. (1998). Collaboration rules for autonom-ous software agents. Decision Support Systems 24,3-4, 269-278 https://doi.org/10.1016/S0167-9236(98)00070-0
  46. Varaiya, P. (1993) Smart cars on smart roads: Problems of control. IEEE Transactions on Automatic Control 38, 195-207 https://doi.org/10.1109/9.250509
  47. Venhovens, R, Naab, K. and Adiprasito, B. (2000). Stop and go cruise control, International Journat of Auto-motive Technology 1, 2, 61-69
  48. Woll, J. (1994). Radar based collision warning system. SAE Paper No. 94C036
  49. Zachman, J. (1999). A framework for Systems Archi-tecture. IBMSy stems Journal 38, 2-3, 454-470
  50. Zhang, W., Shladover, S., Hall, R. and Plocher, T. (1994). A functional definition of automated highway systems. Transportation Research Board 13