Synthesis and Crystal Chemistry of New Actinide Pyrochlores

새로운 파이로클로어의 합성 및 결정화학적 특징

  • ;
  • ;
  • ;
  • Sergey V. Yudintsev
  • 장영남 (한국지질자원연구원 지질연구부) ;
  • 채수천 (한국지질자원연구원 지질연구부) ;
  • 배인국 (한국지질자원연구원 지질연구부) ;
  • Published : 2002.03.01

Abstract

New pyrochlore-type phases($A_2$$B_2$$O_{7}$) were synthesized in the systems: CaO-C$eO_2$-T$iO_2$, CaO-$UO_2$(T$hO_2$)-Z$rO_2$, CaO-$UO_2$(T$hO_2$)-$Gd_2$$O_3$-T$iO_2$-Z$rO_2$, 및 CaO-T$hO_2$-S$nO_2$. The starting materials were pressed with the pressure of 200~400 MPa and sintered at 1500~ 155$0^{\circ}C$ for 4~8 hours in air and at 1300~ 135$0^{\circ}C$ for 5 ~50 hours under oxygen atmosphere. The products were characterized using XRD, SEM/EDS and TEM. In the bulk compositions of CaCe$Ti_2$$O_{7}$, CaTh$Zr_2$$O_{7}$,($Ca_{0.5}$ Gd$Th_{0.5}$)(ZrTi)$O_{7}$) ($Ca_{0.5}$Gd$Th_{0.5}$)(ZrTi)$O_{7}$, ($Ca_{0.5}$G$dU_{0.5}$)(ZrTi)$O_{7}$ and CaTh$Sn_2$$O_{7}$ , pyrochlore was the major phase, together with other oxide phase $of_2$$O_{7}$ fluorite structure. In the samples with target compositions CaU$Zr_2$$O_2$$Ca_{0.5}$ G$dU_{0.5}$)$Zr_2$T$iO_{7}$ pyrochlore was not identified, but a fluorite-structured phase was detected. The formation factor as the stable phase depended on crystal chemical characteristics of the actinide and lanthanide elements of the system concerned.

Keywords

References

  1. Aleshin, E. and Roy, R. (1962) Crystal chemistry of pyrochlore. J. Am. Cer. Soc., 45, 18-25.
  2. Begg, B.D., Vance, E.R., Day, R.A., Hambley, M., and Conradson, S.D. (1997) Plutonium and neptunium incorporation in zirconolite. MRS Symp. Proc., 432, Pittchburg, 325-332.
  3. Begg, B.D., Hess, NJ., and McCready, D. (2001) Heavy-ion irradiation effects in Gdz(Th.xZrx)07 pyrochlores. J. Nucl, Mat. 289, 188-193.
  4. Belov, N.V. (1950) Essays on structural mineralogy. Miner. Iss. L'vov, Geol. Soc., 4, 21-34.
  5. Chakoumakos, B.C. and Ewing, R.C. (1985) Crystal chemical constraints on the formation of actinide pyrochlores. MRS. Symp. Proc., 44, Pittsburgh, 641-646.
  6. Ebbinghaus, B.B., VanKonynenburg, R.A., Ryerson F.J., Vance, E.R., Stewart, M.W.A., Jostsons, A.,Allender, J.S., Rankin, T., and Congdon, J. (1998) Ceramic formulaion for the immobilization of plutonium. In: Proceedings of the International Conference HLW, LLW, Mixed Waste Management and Environmental Restoration Working Towards a Cleaner Environment, Tuscon, AZ, CD-Rom version, Rep. N65-4.
  7. Ewing, R.C. (1999) Nuclear waste forms for actinides. Proc. Nat. Acad. Sci. USA, 96, 3432-3439.
  8. Ewing, R.C., Weber, WJ., and Lutze, W. (1996) Crystalline Ceramics. In: Merz, E.R. and Walter, C.E. (eds.), Waste Forms for the Disposal of Weapons Plutonium, Disposal of Weapon Plutonium, 65-84.
  9. Isupov, V.A. (1958) Geometrical criterium of the pyrochlore-type structure, Crystallography. 3, 99-100.
  10. Lutze, W. and Ewing R.C. (1988) Summary and evaluation of waste forms. In: Lutze, W. and Ewing, R.C (eds), Radioactive Waste Forms for the Future, North-Holland Physics Publishing,Amsterdam, Netherlands, 699-740.
  11. McCauley, R.A. (1980) Structural characteristics of pyrochlore formation. J. Appl, Phys., 5I, 1, 290-294.
  12. Raison, P.E. Haire, R.G. Sato, T., and Ogawa, T. (1999) Fundamental and technological aspects of actinide oxide pyrochlores: Relevance for Immobilization Matrices. MRS Symp. Proc., 556, Warrendale, 3-10.
  13. Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., 32 (Pt. A), 751-767.
  14. Shoup, S.S. and Bamberger, C.E. (1997) Synthesis of titanate-based hosts for the immobilization of Pu(III) and Am(I1I). MRS Symp. Proc., 465, Pittsburgh, 379-386.
  15. Vance, E.R., Begg, B.D., Day, R.A., and Ball, CJ. (1995) Zirconolite-rich ceramics for actinide waste. MRS. Symp. Proc. 353, Pittsburgh, 767-774.
  16. Wang, S.X. Begg, B.D., Wang, L.M., Ewing, R.C., Weber, WJ., and Govidan Kutty, K.V. (1999) Radiation stability of gadolinium zirconate a waste form for plutonium disposition. J. Mat. Res., 14, 4470-4473.
  17. Weber, WJ. and Ewing, R.C. (2000) Plutonium immobilization and radiation effects. Science, 289, 2051-2052.
  18. Xu, H. Wang, Y. Putnam R.L., Gutierriez, J., and Navrosky, A. (2000) Microstructure and composition of synroc samples crystallized from a CaCe$Ti_2O_7$ chemical system: HRTEM/EELS Investigation. MRS Symp. Proc. 608, Warrendale, 461-466.